A258935 Independence number of Keller graphs.
4, 5, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 1
Examples
For G(2), a maximum independent set is {03,10,12,13,23}.
References
- W. Jarnicki, W. Myrvold, P. Saltzman, S. Wagon, Properties, proved and conjectured, of Keller, queen, and Mycielski graphs, Ars Mathematica Contemporanea 13:2 (2017) 427-460.
Links
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Eric Weisstein's World of Mathematics, Independence Number
- Eric Weisstein's World of Mathematics, Keller Graph
Crossrefs
Programs
-
Mathematica
Join[{4, 5}, 2^Range[3, 10]]
-
PARI
a(n)=if(n>2,2^n,n+3) \\ Charles R Greathouse IV, Nov 07 2015
Formula
a(n) = 2^n except a(1) = 4 and a(2) = 5.
G.f.: x*(x*(3+2*x)-4)/(2*x-1), e.g.f.: exp(2*x)+x^2/2+2*x-1. - Benedict W. J. Irwin, Jul 15 2016