cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258942 Decimal expansion of a constant related to A258941.

Original entry on oeis.org

1, 0, 9, 7, 8, 6, 3, 3, 0, 9, 7, 2, 7, 3, 1, 0, 9, 6, 8, 6, 5, 8, 2, 2, 4, 8, 2, 3, 2, 5, 0, 7, 4, 1, 3, 3, 0, 9, 1, 2, 8, 8, 0, 8, 7, 3, 8, 9, 3, 6, 3, 0, 4, 5, 7, 9, 1, 6, 4, 9, 8, 2, 5, 9, 9, 4, 0, 9, 2, 7, 3, 8, 5, 2, 4, 9, 4, 3, 2, 4, 8, 1, 7, 1, 8, 3, 6, 1, 6, 0, 2, 3, 7, 2, 1, 4, 3, 1, 0, 1, 7, 7, 4, 8, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 07 2015

Keywords

Examples

			1.09786330972731096865822482325074133091288087389363045791649825994...
		

Crossrefs

Programs

  • Maple
    evalf(8*exp(Pi/(6*sqrt(3))) * Pi^(5/2) / GAMMA(1/6)^3, 120); # Vaclav Kotesovec, Nov 14 2015
  • Mathematica
    RealDigits[8*E^(Pi/(6*Sqrt[3]))*Pi^(5/2)/Gamma[1/6]^3, 10, 105][[1]] (* Vaclav Kotesovec, Nov 14 2015 *)

Formula

Equals limit n->infinity A258941(n) * (-1)^n / exp(Pi*n/sqrt(3)).
Equals 8*exp(Pi/(6*sqrt(3))) * Pi^(5/2) / Gamma(1/6)^3. - Vaclav Kotesovec, Nov 14 2015