cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258945 Decimal expansion of Dickman's constant C_4.

Original entry on oeis.org

0, 6, 7, 6, 4, 5, 2, 0, 2, 1, 0, 6, 9, 4, 6, 1, 3, 6, 9, 6, 9, 7, 5, 0, 2, 3, 1, 0, 3, 3, 8, 2, 2, 9, 9, 3, 9, 2, 3, 4, 2, 1, 9, 3, 4, 4, 9, 4, 9, 2, 0, 4, 3, 1, 7, 3, 0, 1, 8, 6, 0, 1, 3, 4, 6, 5, 2, 5, 7, 5, 3, 8, 5, 1, 1, 6, 8, 5, 5, 5, 2, 9, 0, 9, 8, 0, 6, 8, 5, 2, 2, 4, 6, 3, 5, 6, 2, 4, 4, 8, 2, 7, 0, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 15 2015

Keywords

Examples

			0.067645202106946136969750231033822993923421934494920431730186...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; C4 = NIntegrate[(Log[x/(2*x+1)]*PolyLog[2, x] + (1/2)*Log[x]^2* PolyLog[1, -2*x])/(x*(x+1)), {x, 0, 1/2}, WorkingPrecision -> digits+5] + 3*PolyLog[4, 1/2] - 3/8 *PolyLog[4, 1/4] - 3/4* Log[2]*PolyLog[3, 1/4] + (Pi^2 - 9*Log[2]^2)/12*PolyLog[2, 1/4] + 21*Log[2]*Zeta[3]/8 + Pi^2*(Log[2]^2/24) - Pi^2*Log[2]*(Log[3]/6) + Log[2]^3*Log[3]/2 - 5*Log[2]^4/8; Join[{0}, RealDigits[C4, 10, digits] // First]
  • Python
    from mpmath import mp, log, polylog, zeta, pi, quad
    mp.dps=104
    f=lambda x: (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)**2*polylog(1, -2*x))/(x*(x+1))
    I=quad(f, [0, 1/2]) + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(pi**2 - 9*log(2)**2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + pi**2*(log(2)**2/24) - pi**2*log(2)*(log(3)/6) + log(2)**3*log(3)/2 - 5*log(2)**4/8
    print([int(z) for z in list(str(I)[2:-1])]) # Indranil Ghosh, Jul 03 2017

Formula

C_1 = 0, C_2 = -Pi^2/12, C_3 = -zeta(3)/3.
C_4 = Integral_{0..1/2} (log(x/(2*x+1))*polylog(2, x) + (1/2)*log(x)^2*polylog(1, -2*x))/(x*(x+1)) dx + 3*polylog(4, 1/2) - 3/8*polylog(4, 1/4) - 3/4*log(2) * polylog(3, 1/4) +(Pi^2 - 9*log(2)^2)/12*polylog(2, 1/4) + 21*log(2)*zeta(3)/8 + Pi^2*(log(2)^2/24) - Pi^2*log(2)*(log(3)/6) + log(2)^3*log(3)/2 - 5*log(2)^4/8.
Also (conjecturally) equals Pi^4/1440.