cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258947 Decimal expansion of the multiple zeta value (Euler sum) zetamult(6,2).

This page as a plain text file.
%I A258947 #18 Feb 22 2025 12:39:54
%S A258947 0,1,7,8,1,9,7,4,0,4,1,6,8,3,5,9,8,8,3,6,2,6,5,9,5,3,0,2,4,8,7,2,4,6,
%T A258947 1,2,1,6,8,7,1,3,1,3,7,1,1,0,2,9,1,1,8,8,4,1,8,8,2,1,3,6,1,9,1,7,6,1,
%U A258947 3,4,8,0,2,7,6,4,1,6,0,4,6,3,7,1,8,2,8,6,2,1,0,1,9,2,0,5,8,7,9,4
%N A258947 Decimal expansion of the multiple zeta value (Euler sum) zetamult(6,2).
%H A258947 Richard E. Crandall, Joe P. Buhler, <a href="https://projecteuclid.org/journals/experimental-mathematics/volume-3/issue-4/On-the-evaluation-of-Euler-sums/em/1048515810.full">On the evaluation of Euler Sums</a>, Exp. Math. 3 (4) (1994) 275-285 Table 1.
%H A258947 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258947 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%F A258947 zetamult(6,2) = Sum_{m>=2} (sum_{n=1..m-1} 1/(m^6*n^2)).
%F A258947 Equals Sum_{m>=2} H(m-1, 2)/m^6, where H(n,2) is the n-th harmonic number of order 2.
%e A258947 0.01781974041683598836265953024872461216871313711029118841882136191761348...
%t A258947 digits = 99; zetamult[6,2] = NSum[HarmonicNumber[m-1, 2]/m^6, {m, 2, Infinity}, WorkingPrecision -> digits+20, NSumTerms -> 200, Method -> {"NIntegrate", "MaxRecursion" -> 18}]; Join[{0}, RealDigits[zetamult[6,2], 10, digits] // First]
%o A258947 (PARI) zetamult([6,2]) \\ _Charles R Greathouse IV_, Jan 21 2016
%o A258947 (PARI) zetamult([2, 2, 1, 1, 1, 1]) \\ _Charles R Greathouse IV_, Feb 04 2025
%Y A258947 Cf. A072691, A197110.
%K A258947 nonn,cons
%O A258947 0,3
%A A258947 _Jean-François Alcover_, Jun 15 2015