cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258973 The number of plain lambda terms presented by de Bruijn indices, see Bendkowski et al., where zeros have no weight.

This page as a plain text file.
%I A258973 #59 Sep 05 2024 14:13:38
%S A258973 1,3,10,40,181,884,4539,24142,131821,734577,4160626,23881695,
%T A258973 138610418,812104884,4796598619,28529555072,170733683579,
%U A258973 1027293807083,6211002743144,37713907549066,229894166951757,1406310771154682,8630254073158599,53117142215866687,327800429456036588
%N A258973 The number of plain lambda terms presented by de Bruijn indices, see Bendkowski et al., where zeros have no weight.
%H A258973 Alois P. Heinz, <a href="/A258973/b258973.txt">Table of n, a(n) for n = 0..1000</a>
%H A258973 Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc, <a href="http://arxiv.org/abs/1609.08106">Combinatorics of λ-terms: a natural approach</a>, arXiv:1609.08106 [cs.LO], 2016.
%H A258973 Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc, <a href="http://arxiv.org/abs/1506.02367">A Natural Counting of Lambda Terms</a>, arXiv preprint arXiv:1506.02367 [cs.LO], 2015.
%H A258973 Maciej Bendkowski and Pierre Lescanne, <a href="https://doi.org/10.23638/LMCS-15(4:3)2019">On the enumeration of closures and environments with an application to random generation</a>, Logical Methods in Computer Science (2019) Vol. 15, No. 4, 3:1-3:21.
%H A258973 K. Grygiel and P. Lescanne, <a href="http://perso.ens-lyon.fr/pierre.lescanne/PUBLICATIONS/natural_counting.pdf">A natural counting of lambda terms</a>, Preprint 2015.
%F A258973 G.f. G(z) satisfies z*G(z)^2 - (1-z)*G(z) + 1/(1-z) = 0 (see Bendkowski link Appendix B, p. 23). - _Michel Marcus_, Jun 30 2015
%F A258973 a(n) ~ 3^(n+1/2) * sqrt(43/(2*((43*(3397 - 261*sqrt(129)))^(1/3) + (43*(3397 + 261*sqrt(129)))^(1/3) - 86)*Pi)) / (3 - (2*6^(2/3)) / (sqrt(129)-9)^(1/3) + (6*(sqrt(129)-9))^(1/3))^n / (2*n^(3/2)). - _Vaclav Kotesovec_, Jul 01 2015
%F A258973 a(n) = 1 + a(n-1) + Sum_{i=0..n-1} a(i)*a(n-1-i). - _Vladimir Kruchinin_, May 03 2018
%F A258973 a(n) = Sum_{i=0..n} Sum_{k=1..n-i} binomial(k+i-1,k-1)*binomial(2*k+i-2,k+i-1)*binomial(n-i-1,n-k-i)/k. - _Vladimir Kruchinin_, May 03 2018
%F A258973 a(n) = Sum_{i=0..n-1} hypergeom([(i+1)/2, i/2+1, i-n+1], [1, 2], -4). - _Peter Luschny_, May 03 2018
%F A258973 From _Peter Bala_, Sep 02 2024: (Start)
%F A258973 a(n) = Sum_{k = 0..n} 1/(k + 1) * binomial(2*k, k)*binomial(n+2*k+1, 3*k+1).
%F A258973 Partial sums of A360102. Cf. A086616.
%F A258973 a(n) = (n + 1)*hypergeom([1/2, -n, (n+2)/2, (n+3)/2], [2, 2/3, 4/3], -16/27).
%F A258973 P-recursive: (n + 1)*a(n) = (8*n - 3)*a(n-1) - (10*n - 13)*a(n-2) + (4*n - 11)*a(n-3) - (n - 4)*a(n-4) with a(0) = 1, a(1) = 3, a(2) = 10 and a(3) = 40.
%F A258973 G.f. A(x) = 1/(1 - x)^2 * c(x/(1-x)^3) = (1 - x - sqrt((1 - 7*x + 3*x^2 - x^3)/(1 - x)))/(2*x), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. (End)
%p A258973 a:= proc(n) option remember; `if`(n<4, [1, 3, 10, 40][n+1],
%p A258973       ((8*n-3)*a(n-1)-(10*n-13)*a(n-2)
%p A258973      +(4*n-11)*a(n-3)-(n-4)*a(n-4))/(n+1))
%p A258973     end:
%p A258973 seq(a(n), n=0..25);  # _Alois P. Heinz_, Jun 30 2015
%p A258973 a := n -> add(hypergeom([(i+1)/2, i/2+1, i-n+1], [1, 2], -4), i=0..n-1):
%p A258973 seq(simplify(a(n)), n=0..25); # _Peter Luschny_, May 03 2018
%t A258973 a[n_] := a[n] = If[n<4, {1, 3, 10, 40}[[n+1]], ((8*n-3)*a[n-1] - (10*n-13)*a[n-2] + (4*n-11)*a[n-3] - (n-4)*a[n-4])/(n+1)]; Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jul 22 2015, after _Alois P. Heinz_ *)
%o A258973 (PARI) lista(nn) = {z = y + O(y^nn); Vec(((1-z)^2 - sqrt((1-z)^4-4*z*(1-z))) / (2*z*(1-z)));} \\ _Michel Marcus_, Jun 30 2015
%o A258973 (Maxima)
%o A258973 a(n):=sum(sum((binomial(k+i-1,k-1)*binomial(2*k+i-2,k+i-1)*binomial(n-i-1,n-k-i))/k,k,1,n-i),i,0,n); /* _Vladimir Kruchinin_, May 03 2018 */
%Y A258973 Cf. A086616, A105633, A114851, A360102.
%K A258973 nonn,easy
%O A258973 0,2
%A A258973 _Kellen Myers_, Jun 15 2015
%E A258973 More terms from _Michel Marcus_, Jun 30 2015