cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258982 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,3).

This page as a plain text file.
%I A258982 #14 Feb 22 2025 12:40:52
%S A258982 0,3,7,7,0,7,6,7,2,9,8,4,8,4,7,5,4,4,0,1,1,3,0,4,7,8,2,2,9,3,6,5,9,9,
%T A258982 1,4,8,2,2,6,0,1,3,1,9,4,1,5,2,7,7,5,2,4,0,1,2,6,4,5,0,7,7,8,0,3,9,1,
%U A258982 0,9,3,8,7,5,5,5,0,7,2,1,9,8,9,1,3,8,3,6,0,2,9,8,1,9,0,7,7,0,8,6
%N A258982 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,3).
%H A258982 Richard E. Crandall, Joe P. Buhler, <a href="https://projecteuclid.org/journals/experimental-mathematics/volume-3/issue-4/On-the-evaluation-of-Euler-sums/em/1048515810.full">On the evaluation of Euler Sums</a>, Exp. Math. 3 (4) (1994) 275-285 Table 1.
%H A258982 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258982 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%F A258982 zetamult(5,3) = Sum_{m>=2} (sum_{n=1..m-1} 1/(m^5*n^3)).
%F A258982 Equals Sum_{m>=2} (H(m-1, 3)+polygamma(2,1)/2+zeta(3))/m^5, where H(n,3) is the n-th harmonic number of order 3.
%F A258982 Also equals Sum_{m>=2} (polygamma(2,m)+zeta(3))/(2m^5).
%F A258982 Also equals 5*zeta(3)*zeta(5) - (147/24)*zeta(8) - (5/2)*zetamult(6, 2), where zetamult(6,2) is A258947.
%e A258982 0.03770767298484754401130478229365991482260131941527752401264507780391...
%t A258982 digits = 99; zetamult[6, 2] = NSum[HarmonicNumber[m-1, 2]/m^6, {m, 2, Infinity}, WorkingPrecision -> digits+20, NSumTerms -> 200, Method -> {"NIntegrate", "MaxRecursion" -> 18}]; zetamult[5, 3] = 5*Zeta[3]*Zeta[5] - (147/24)*Zeta[8] - (5/2)*zetamult[6, 2]; Join[{0}, RealDigits[zetamult[5, 3], 10, digits] // First]
%o A258982 (PARI) zetamult([5,3]) \\ _Charles R Greathouse IV_, Jan 21 2016
%Y A258982 Cf. A072691, A197110, A258947.
%K A258982 nonn,cons
%O A258982 0,2
%A A258982 _Jean-François Alcover_, Jun 16 2015