cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).

This page as a plain text file.
%I A258983 #22 Aug 08 2025 00:47:56
%S A258983 2,2,8,8,1,0,3,9,7,6,0,3,3,5,3,7,5,9,7,6,8,7,4,6,1,4,8,9,4,1,6,8,8,7,
%T A258983 9,1,9,3,2,5,0,9,3,4,2,7,1,9,8,8,2,1,6,0,2,2,9,4,0,7,1,0,2,6,9,3,2,2,
%U A258983 5,3,5,8,6,1,5,2,6,4,4,5,8,0,2,6,9,1,6,0,3,1,5,0,1,0,1,5,4,7,2,0,2,8,3,7
%N A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2).
%C A258983 Also zetamult(2, 2, 1). - _Charles R Greathouse IV_, Jan 04 2017
%H A258983 Dominique Manchon, <a href="http://arxiv.org/abs/1603.01498">Arborified multiple zeta values</a>, arXiv:1603.01498 [math.CO], 2016.
%H A258983 Jonathan Borwein and Roland Girgensohn, <a href="https://doi.org/10.37236/1247">Evaluation of triple Euler Sums</a>, Elec. Jour. of Comb., Vol. 3, Issue 1, 1996. Article R23 (see page 21).
%H A258983 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258983 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%F A258983 Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5).
%e A258983 0.2288103976033537597687461489416887919325093427198821602294071...
%t A258983 RealDigits[3*Zeta[2]*Zeta[3] - (11/2)*Zeta[5], 10, 104] // First
%o A258983 (PARI) zetamult([3,2]) \\ _Charles R Greathouse IV_, Jan 21 2016
%o A258983 (PARI) zetamult([2,2,1]) \\ _Charles R Greathouse IV_, Jan 04 2017
%Y A258983 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
%Y A258983 Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).
%K A258983 nonn,cons,easy
%O A258983 0,1
%A A258983 _Jean-François Alcover_, Jun 16 2015