This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258983 #22 Aug 08 2025 00:47:56 %S A258983 2,2,8,8,1,0,3,9,7,6,0,3,3,5,3,7,5,9,7,6,8,7,4,6,1,4,8,9,4,1,6,8,8,7, %T A258983 9,1,9,3,2,5,0,9,3,4,2,7,1,9,8,8,2,1,6,0,2,2,9,4,0,7,1,0,2,6,9,3,2,2, %U A258983 5,3,5,8,6,1,5,2,6,4,4,5,8,0,2,6,9,1,6,0,3,1,5,0,1,0,1,5,4,7,2,0,2,8,3,7 %N A258983 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,2). %C A258983 Also zetamult(2, 2, 1). - _Charles R Greathouse IV_, Jan 04 2017 %H A258983 Dominique Manchon, <a href="http://arxiv.org/abs/1603.01498">Arborified multiple zeta values</a>, arXiv:1603.01498 [math.CO], 2016. %H A258983 Jonathan Borwein and Roland Girgensohn, <a href="https://doi.org/10.37236/1247">Evaluation of triple Euler Sums</a>, Elec. Jour. of Comb., Vol. 3, Issue 1, 1996. Article R23 (see page 21). %H A258983 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a> %H A258983 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a> %F A258983 Equals Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^2)) = 3*zeta(2)*zeta(3) - (11/2)*zeta(5). %e A258983 0.2288103976033537597687461489416887919325093427198821602294071... %t A258983 RealDigits[3*Zeta[2]*Zeta[3] - (11/2)*Zeta[5], 10, 104] // First %o A258983 (PARI) zetamult([3,2]) \\ _Charles R Greathouse IV_, Jan 21 2016 %o A258983 (PARI) zetamult([2,2,1]) \\ _Charles R Greathouse IV_, Jan 04 2017 %Y A258983 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4). %Y A258983 Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)). %K A258983 nonn,cons,easy %O A258983 0,1 %A A258983 _Jean-François Alcover_, Jun 16 2015