cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258984 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,2).

This page as a plain text file.
%I A258984 #10 Feb 16 2025 08:33:25
%S A258984 0,8,8,4,8,3,3,8,2,4,5,4,3,6,8,7,1,4,2,9,4,3,2,7,8,3,9,0,8,5,7,6,0,4,
%T A258984 5,6,6,4,7,9,7,8,7,5,2,3,8,6,7,5,0,5,9,1,6,7,4,8,8,9,2,7,6,5,5,9,4,7,
%U A258984 4,2,7,8,9,2,8,7,4,3,5,7,1,4,5,5,8,2,7,7,9,4,6,0,0,4,7,0,5,8,6,6,1,9,5,5,9,6,6,7
%N A258984 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,2).
%H A258984 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258984 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%F A258984 zetamult(4,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^2)) = zeta(3)^2 - (4/3)*zeta(6).
%e A258984 0.088483382454368714294327839085760456647978752386750591674889276559474...
%t A258984 Join[{0}, RealDigits[Zeta[3]^2 - (4/3)*Zeta[6], 10, 107] // First]
%o A258984 (PARI) zetamult([4,2]) \\ _Charles R Greathouse IV_, Jan 21 2016
%Y A258984 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
%K A258984 nonn,cons,easy
%O A258984 0,2
%A A258984 _Jean-François Alcover_, Jun 16 2015