This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258984 #10 Feb 16 2025 08:33:25 %S A258984 0,8,8,4,8,3,3,8,2,4,5,4,3,6,8,7,1,4,2,9,4,3,2,7,8,3,9,0,8,5,7,6,0,4, %T A258984 5,6,6,4,7,9,7,8,7,5,2,3,8,6,7,5,0,5,9,1,6,7,4,8,8,9,2,7,6,5,5,9,4,7, %U A258984 4,2,7,8,9,2,8,7,4,3,5,7,1,4,5,5,8,2,7,7,9,4,6,0,0,4,7,0,5,8,6,6,1,9,5,5,9,6,6,7 %N A258984 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,2). %H A258984 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a> %H A258984 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a> %F A258984 zetamult(4,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^2)) = zeta(3)^2 - (4/3)*zeta(6). %e A258984 0.088483382454368714294327839085760456647978752386750591674889276559474... %t A258984 Join[{0}, RealDigits[Zeta[3]^2 - (4/3)*Zeta[6], 10, 107] // First] %o A258984 (PARI) zetamult([4,2]) \\ _Charles R Greathouse IV_, Jan 21 2016 %Y A258984 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4). %K A258984 nonn,cons,easy %O A258984 0,2 %A A258984 _Jean-François Alcover_, Jun 16 2015