This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258985 #11 Feb 16 2025 08:33:25 %S A258985 0,3,8,5,7,5,1,2,4,3,4,2,7,5,3,2,5,5,5,0,5,9,2,5,4,6,4,3,7,2,9,9,5,5, %T A258985 7,0,0,1,9,7,3,4,8,4,1,6,9,8,9,0,9,0,0,8,3,3,1,0,4,9,3,7,2,9,3,3,5,8, %U A258985 2,3,6,5,9,1,0,8,4,5,3,8,3,6,5,5,6,8,4,8,8,2,9,4,6,4,5,6,4,7,3,1,5,5,6,4,9 %N A258985 Decimal expansion of the multiple zeta value (Euler sum) zetamult(5,2). %H A258985 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a> %H A258985 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a> %F A258985 zetamult(5,2) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^5*n^2)) = 5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 11*zeta(7). %e A258985 0.03857512434275325550592546437299557001973484169890900833104937293358... %t A258985 Join[{0}, RealDigits[5*Zeta[2]*Zeta[5] + 2*Zeta[3]*Zeta[4] - 11*Zeta[7], 10, 104] // First] %o A258985 (PARI) zetamult([5,2]) \\ _Charles R Greathouse IV_, Jan 21 2016 %Y A258985 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4). %K A258985 nonn,cons,easy %O A258985 0,2 %A A258985 _Jean-François Alcover_, Jun 16 2015