cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258986 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,3).

This page as a plain text file.
%I A258986 #19 Aug 08 2025 00:47:50
%S A258986 7,1,1,5,6,6,1,9,7,5,5,0,5,7,2,4,3,2,0,9,6,9,7,3,8,0,6,0,8,6,4,0,2,6,
%T A258986 1,2,0,9,2,5,6,1,2,0,4,4,3,8,3,3,9,2,3,6,4,9,2,2,2,2,4,9,6,4,5,7,6,8,
%U A258986 6,0,8,5,7,4,5,0,5,8,2,6,5,1,1,5,4,2,5,2,3,4,4,6,3,6,0,0,7,9,8,9,6,4,1
%N A258986 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,3).
%H A258986 Dominique Manchon, <a href="http://arxiv.org/abs/1603.01498">Arborified multiple zeta values</a>, arXiv:1603.01498 [math.CO], 2016.
%H A258986 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258986 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%F A258986 zetamult(2,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = (9/2)*zeta(5) - 2*zeta(2)*zeta(3).
%F A258986 Equals Sum_{i, j >= 1} 1/(i^3*j^2*binomial(i+j, i)). More generally, for n >= 2, Sum_{i, j >= 1} 1/(i^n*j^2*binomial(i+j, i)) = zeta(2)*zeta(n) - zeta(n+2) - zeta(n,2). - _Peter Bala_, Aug 05 2025
%e A258986 0.711566197550572432096973806086402612092561204438339236492222496457686...
%t A258986 RealDigits[(9/2)*Zeta[5] - 2*Zeta[2]*Zeta[3], 10, 103] // First
%o A258986 (PARI) zetamult([2,3]) \\ _Charles R Greathouse IV_, Jan 21 2016
%Y A258986 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
%Y A258986 Cf. A013663 (zeta(5)), A183699 (zeta(2)*zeta(3)).
%K A258986 nonn,cons,easy
%O A258986 0,1
%A A258986 _Jean-François Alcover_, Jun 16 2015