cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258987 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,3).

This page as a plain text file.
%I A258987 #21 Jun 06 2025 08:37:15
%S A258987 2,1,3,7,9,8,8,6,8,2,2,4,5,9,2,5,4,7,0,9,9,5,8,3,5,7,4,5,0,8,0,3,3,6,
%T A258987 4,9,6,4,0,9,5,8,9,5,7,8,6,5,5,1,7,5,5,6,1,4,4,5,1,2,7,4,8,9,4,7,1,2,
%U A258987 5,8,3,6,6,1,4,6,9,8,1,0,2,0,4,1,7,0,9,5,6,0,2,8,9,9,9,1,1,5,5,0,6,4,8
%N A258987 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,3).
%H A258987 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258987 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%H A258987 <a href="/wiki/Index_to_constants#Start_of_section_M">Index to constants which are multiple zeta values</a> (3,3)
%F A258987 zetamult(3,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^3)) = (1/2)*zeta(3)^2 - (1/2)*zeta(6). - [Corrected by _Detlef Meya_, Jun 06 2025 ]
%e A258987 0.213798868224592547099583574508033649640958957865517556144512748947...
%t A258987 RealDigits[(1/2)*Zeta[3]^2 - (1/2)*Zeta[6], 10, 103] // First (* Corrected by _Detlef Meya_, Jun 06 2025 *)
%o A258987 (PARI) zetamult([3,3]) \\ _Charles R Greathouse IV_, Jan 21 2016
%Y A258987 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
%K A258987 nonn,cons,easy
%O A258987 0,1
%A A258987 _Jean-François Alcover_, Jun 16 2015