cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258988 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3).

This page as a plain text file.
%I A258988 #11 Feb 16 2025 08:33:25
%S A258988 0,8,5,1,5,9,8,2,2,5,3,4,8,3,3,6,5,1,4,0,6,8,0,6,0,1,8,8,7,2,3,6,7,3,
%T A258988 4,5,9,5,7,3,3,9,5,0,8,5,8,6,8,7,7,3,2,0,4,6,7,1,0,3,4,3,2,0,5,3,3,0,
%U A258988 8,5,7,6,7,5,0,8,7,1,7,6,6,5,1,1,1,7,3,3,8,6,7,5,8,1,8,5,0,2,0,7,2,0,5,4,1
%N A258988 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3).
%H A258988 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258988 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%F A258988 zetamult(4,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = 17*zeta(7) - 10*zeta(2)*zeta(5).
%e A258988 0.0851598225348336514068060188723673459573395085868773204671034320533...
%t A258988 Join[{0}, RealDigits[17*Zeta[7] - 10*Zeta[2]*Zeta[5], 10, 104] // First]
%o A258988 (PARI) zetamult([4,3]) \\ _Charles R Greathouse IV_, Jan 21 2016
%Y A258988 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4).
%K A258988 nonn,cons,easy
%O A258988 0,2
%A A258988 _Jean-François Alcover_, Jun 16 2015