This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A258988 #11 Feb 16 2025 08:33:25 %S A258988 0,8,5,1,5,9,8,2,2,5,3,4,8,3,3,6,5,1,4,0,6,8,0,6,0,1,8,8,7,2,3,6,7,3, %T A258988 4,5,9,5,7,3,3,9,5,0,8,5,8,6,8,7,7,3,2,0,4,6,7,1,0,3,4,3,2,0,5,3,3,0, %U A258988 8,5,7,6,7,5,0,8,7,1,7,6,6,5,1,1,1,7,3,3,8,6,7,5,8,1,8,5,0,2,0,7,2,0,5,4,1 %N A258988 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,3). %H A258988 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a> %H A258988 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a> %F A258988 zetamult(4,3) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^3)) = 17*zeta(7) - 10*zeta(2)*zeta(5). %e A258988 0.0851598225348336514068060188723673459573395085868773204671034320533... %t A258988 Join[{0}, RealDigits[17*Zeta[7] - 10*Zeta[2]*Zeta[5], 10, 104] // First] %o A258988 (PARI) zetamult([4,3]) \\ _Charles R Greathouse IV_, Jan 21 2016 %Y A258988 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258982 (5,3), A258989 (2,4), A258990 (3,4), A258991 (4,4). %K A258988 nonn,cons,easy %O A258988 0,2 %A A258988 _Jean-François Alcover_, Jun 16 2015