cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258989 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,4).

This page as a plain text file.
%I A258989 #16 Aug 08 2025 00:47:45
%S A258989 6,7,4,5,2,3,9,1,4,0,3,3,9,6,8,1,4,0,4,9,1,5,6,0,6,0,8,2,5,7,4,2,9,9,
%T A258989 3,9,2,7,8,3,8,4,3,6,5,1,3,7,8,8,9,5,7,9,7,0,6,9,1,7,2,2,1,4,4,3,7,7,
%U A258989 4,8,5,8,2,4,7,7,2,4,8,5,1,9,5,6,2,5,2,6,8,8,8,5,3,4,3,0,7,9,1,2,7,8,1
%N A258989 Decimal expansion of the multiple zeta value (Euler sum) zetamult(2,4).
%H A258989 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258989 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%F A258989 zetamult(2,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^2*n^4)) = (25/12)*zeta(6) - zeta(3)^2.
%F A258989 Equals Sum_{i, j >= 1} 1/(i^4*j^2*binomial(i+j, i)). - _Peter Bala_, Aug 05 2025
%e A258989 0.67452391403396814049156060825742993927838436513788957970691722144377...
%t A258989 RealDigits[(25/12)*Zeta[6] - Zeta[3]^2, 10, 103] // First
%o A258989 (PARI) zetamult([2,4]) \\ _Charles R Greathouse IV_, Jan 21 2016
%Y A258989 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258990 (3,4), A258991 (4,4).
%K A258989 nonn,cons,easy
%O A258989 0,1
%A A258989 _Jean-François Alcover_, Jun 16 2015