cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258990 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,4).

This page as a plain text file.
%I A258990 #11 Feb 16 2025 08:33:25
%S A258990 2,0,7,5,0,5,0,1,4,6,1,5,7,3,2,0,9,5,9,0,7,8,0,7,6,0,5,4,9,4,6,7,1,4,
%T A258990 6,5,4,4,1,8,2,8,6,7,9,5,5,0,6,0,6,1,9,0,4,1,9,5,1,7,8,9,6,5,6,9,7,1,
%U A258990 0,1,1,9,9,7,1,6,0,7,8,0,0,7,8,0,9,8,6,6,4,3,6,3,3,0,5,2,3,0,2,0,2,9,6,5,9
%N A258990 Decimal expansion of the multiple zeta value (Euler sum) zetamult(3,4).
%H A258990 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258990 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%F A258990 zetamult(3,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^3*n^4)) = 10*zeta(2)*zeta(5) + zeta(3)*zeta(4) - 18*zeta(7).
%e A258990 0.20750501461573209590780760549467146544182867955060619041951789656971...
%t A258990 RealDigits[10*Zeta[2]*Zeta[5] + Zeta[3]*Zeta[4] - 18*Zeta[7], 10, 105] // First
%o A258990 (PARI) zetamult([3,4]) \\ _Charles R Greathouse IV_, Jan 21 2016
%Y A258990 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258991 (4,4).
%K A258990 nonn,cons,easy
%O A258990 0,1
%A A258990 _Jean-François Alcover_, Jun 16 2015