cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A258991 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,4).

This page as a plain text file.
%I A258991 #12 Feb 16 2025 08:33:25
%S A258991 0,8,3,6,7,3,1,1,3,0,1,6,4,9,5,3,6,1,6,1,4,8,9,0,4,3,6,5,4,2,3,8,7,7,
%T A258991 0,5,4,3,8,2,4,6,7,3,2,5,5,4,1,5,4,1,6,8,3,6,0,7,5,9,1,8,3,5,5,4,3,8,
%U A258991 1,9,1,2,7,1,4,5,6,2,4,0,1,1,9,9,6,0,7,2,6,9,1,9,7,6,9,7,6,6,4,2,6,0,3,7,6,9,7
%N A258991 Decimal expansion of the multiple zeta value (Euler sum) zetamult(4,4).
%H A258991 Eric Weisstein's MathWorld, <a href="https://mathworld.wolfram.com/MultivariateZetaFunction.html">Multivariate Zeta Function</a>
%H A258991 Wikipedia, <a href="https://en.wikipedia.org/wiki/Multiple_zeta_function">Multiple zeta function</a>
%F A258991 zetamult(4,4) = Sum_{m>=2} (Sum_{n=1..m-1} 1/(m^4*n^4)) = (1/2)*(zeta(4)^2 - zeta(8)).
%e A258991 0.08367311301649536161489043654238770543824673255415416836075918355438...
%t A258991 Join[{0}, RealDigits[(1/2)*(Zeta[4]^2 - Zeta[8]), 10, 106] // First]
%o A258991 (PARI) zetamult([4,4]) \\ _Charles R Greathouse IV_, Jan 21 2016
%o A258991 (PARI) (zeta(4)^2-zeta(8))/2 \\ _Charles R Greathouse IV_, Jan 20 2022
%Y A258991 Cf. A072691 (zetamult(1,1)), A197110 (zetamult(2,2)), A258983 (zetamult(3,2)), A258984 (4,2), A258985 (5,2), A258947 (6,2), A258986 (2,3), A258987 (3,3), A258988 (4,3), A258982 (5,3), A258989 (2,4), A258990 (3,4).
%K A258991 nonn,cons,easy
%O A258991 0,2
%A A258991 _Jean-François Alcover_, Jun 16 2015