This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259016 #24 Oct 27 2018 16:40:11 %S A259016 0,0,1,0,2,2,0,3,3,3,0,5,5,5,4,0,11,11,11,4,5,0,10,10,10,4,11,6,0,29, %T A259016 29,29,4,10,13,7,0,78,78,78,4,29,41,6,8,0,141,141,141,4,78,35,13,19,9, %U A259016 0,266,266,266,4,141,38,41,15,23,10,0,147,147,147,4,266,163,35,14,83,29,11 %N A259016 A(n,k) = k-th pi-based antiderivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals. %H A259016 Alois P. Heinz, <a href="/A259016/b259016.txt">Antidiagonals n = 0..20, flattened</a> %F A259016 A(n,k) = min { m >= 0 : A258851^k(m) = n }. %F A259016 A258850(A(n,k),k) = n. %F A259016 A(n,k) <= A000040^k(n) for n>0. %e A259016 A(5,3) = 29 -> 10 -> 11 -> 5. %e A259016 A(5,4) = 78 -> 127 -> 31 -> 11 -> 5. %e A259016 Square array A(n,k) begins: %e A259016 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... %e A259016 1, 2, 3, 5, 11, 10, 29, 78, 141, 266, ... %e A259016 2, 3, 5, 11, 10, 29, 78, 141, 266, 147, ... %e A259016 3, 5, 11, 10, 29, 78, 141, 266, 147, 194, ... %e A259016 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, ... %e A259016 5, 11, 10, 29, 78, 141, 266, 147, 194, 1181, ... %e A259016 6, 13, 41, 35, 38, 163, 138, 253, 346, 1383, ... %e A259016 7, 6, 13, 41, 35, 38, 163, 138, 253, 346, ... %e A259016 8, 19, 15, 14, 43, 191, 201, 217, 1113, 1239, ... %e A259016 9, 23, 83, 431, 3001, 27457, 10626, 112087, 87306, 172810, ... %p A259016 with(numtheory): %p A259016 d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]): %p A259016 A:= proc() local t, A; t, A:= proc()-1 end, proc()-1 end; %p A259016 proc(n, k) local h; %p A259016 while A(n, k) = -1 do %p A259016 t(k):= t(k)+1; h:= (d@@k)(t(k)); %p A259016 if A(h, k) = -1 then A(h, k):= t(k) fi %p A259016 od; A(n, k) %p A259016 end %p A259016 end(): %p A259016 seq(seq(A(n, h-n), n=0..h), h=0..12); %t A259016 d[n_] := If[n == 0, 0, n*Total[Last[#]*PrimePi[First[#]]/First[#]& /@ FactorInteger[n]]]; %t A259016 A[n_, k_] := For[m = 0, True, m++, If[Nest[d, m, k] == n, Return[m]]]; %t A259016 Table[A[n, k-n], {k, 0, 12}, {n, 0, k}] // Flatten (* _Jean-François Alcover_, Mar 20 2017 *) %Y A259016 Columns k=0-3 give: A001477, A258861, A258862, A258995. %Y A259016 Rows n=0,1,4,7,8,9 give: A000004, A258975, A010709, A259168, A259169, A259170. %Y A259016 Cf. A000040, A000720, A258850, A258851. %K A259016 nonn,tabl %O A259016 0,5 %A A259016 _Alois P. Heinz_, Jun 16 2015