This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259023 #12 Apr 10 2025 23:23:10 %S A259023 24,54,56,88,154,174,238,248,266,296,328,374,378,430,442,472,488,494, %T A259023 498,510,568,582,584,680,710,730,742,786,856,874,894,918,962,986,1038, %U A259023 1246,1270,1406,1434,1442,1446,1542,1558,1586,1598 %N A259023 Numbers n such that Product_{d|n} d = k^2 for some k > n and simultaneously number k^2 + 1 is a divisorial prime (A258455). %C A259023 Product_{d|n} d is the product of divisors of n (A007955). %C A259023 If 1+ Product_{d|k} d for k > 2 is a prime p, then p-1 is a square. %C A259023 With number 2 complement of A259021 with respect to A118369. %C A259023 See A258897 - divisorial primes of the form 1 + Product_{d|a(n)} d. %H A259023 Charles R Greathouse IV, <a href="/A259023/b259023.txt">Table of n, a(n) for n = 1..10000</a> %e A259023 The number 24 is in sequence because A007955(24) = 331776 = 576^2 and simultaneously 331777 is prime. %o A259023 (Magma) [n: n in [1..2000] | &*(Divisors(n)) ne n^2 and IsSquare(&*(Divisors(n))) and IsPrime(&*(Divisors(n))+1)]; %o A259023 (PARI) A007955(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)) %o A259023 is(n)=my(t=A007955(n)); t>n^2 && issquare(t) && isprime(t+1) \\ _Charles R Greathouse IV_, Sep 01 2015 %Y A259023 Subsequence of A048943 (product of divisors of n is a square) and A118369 (numbers n such that Prod_{d|n} d + 1 is prime). %Y A259023 Cf. A007955, A258455, A259020, A259021, A258897. %K A259023 nonn %O A259023 1,1 %A A259023 _Jaroslav Krizek_, Sep 01 2015