cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259058 Numbers that are representable in at least two ways as sums of four distinct nonvanishing squares.

This page as a plain text file.
%I A259058 #31 Mar 18 2025 21:12:16
%S A259058 454,530,614,706,806,914,1030,1154,1286,1426,1574,1730,1894,2066,2246,
%T A259058 2434,2630,2834,3046,3266,3494,3730,3974,4226,4486,4754,5030,5314,
%U A259058 5606,5906,6214,6530,6854,7186,7526,7874,8230,8594,8966,9346,9734
%N A259058 Numbers that are representable in at least two ways as sums of four distinct nonvanishing squares.
%C A259058 This is part one of Exercise 229 in Sierpiński's problem book. See p. 20 and p. 110 for the solution. He uses the identity (n-8)^2 + (n-1)^2 + (n+1)^2 + (n+8)^2 = 4*n^2 + 130 = (n-7)^2 + (n-4)^2 + (n+4)^2 + (n+7)^2, for n >= 9.
%C A259058   Here n was replaced by n + 9: (n+1)^2 + (n+8)^2 +(n+10)^2 + (n+17)^2 = 4*n^2 + 72*n + 454 = (n+2)^2 + (n+5)^2 + (n+13)^2 + (n+16)^2, for n >= 0.
%C A259058 There may be other numbers having this property.
%C A259058 Because the summands have no common factor > 1 each of these two representations is called primitive. Therefore, this is a proper subsequence of A223727, hence of A004433. - _Wolfdieter Lang_, Aug 20 2015
%D A259058 W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970.
%H A259058 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A259058 a(n) = 4*n^2 + 72*n + 454 = 2*A259059(n). See the comment for the sum of four squares in two ways.
%F A259058 O.g.f.: 2*(227 - 416*x + 193*x^2)/(1-x)^3.
%F A259058 a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - _Vincenzo Librandi_, Aug 13 2015
%e A259058 n=0: 454 = 1^2 + 8^2 + 10^2 + 17^2 = 2^2 + 5^2 + 13^2 + 16^2.
%e A259058 n=2: 614 = 3^2 + 10^2 + 12^2 + 19^2 = 4^2 + 7^2 + 15^2 + 18^2.
%t A259058 CoefficientList[Series[2 (227 - 416 x + 193 x^2)/(1 - x)^3, {x, 0, 50}], x] (* _Vincenzo Librandi_, Aug 13 2015 *)
%o A259058 (Magma) [4*n^2 + 72*n + 454: n in [0..50]]; // _Vincenzo Librandi_, Aug 13 2015
%o A259058 (Magma) I:=[454, 530, 614]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Aug 13 2015
%o A259058 (PARI) a(n)=4*n^2+72*n+454 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y A259058 Cf. A259059, A223727, A004433, A259060 (four cubes).
%K A259058 nonn,easy
%O A259058 0,1
%A A259058 _Wolfdieter Lang_, Aug 12 2015