cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259059 One half of numbers representable in at least two different ways as sums of four distinct nonvanishing squares. See A259058 for these numbers and their representations.

This page as a plain text file.
%I A259059 #31 Mar 18 2025 21:11:59
%S A259059 227,265,307,353,403,457,515,577,643,713,787,865,947,1033,1123,1217,
%T A259059 1315,1417,1523,1633,1747,1865,1987,2113,2243,2377,2515,2657,2803,
%U A259059 2953,3107,3265,3427,3593,3763,3937,4115,4297,4483,4673,4867,5065,5267,5473
%N A259059 One half of numbers representable in at least two different ways as sums of four distinct nonvanishing squares. See A259058 for these numbers and their representations.
%C A259059 There may be other numbers with this property.
%D A259059 W. SierpiƄski, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970, Problem 227, p. 20 and p. 110.
%H A259059 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F A259059 a(n) = A259058(n)/2.
%F A259059 a(n) = 2*n^2 + 36*n + 227.
%F A259059 O.g.f.: (227 - 416*x + 193*x^2)/(1-x)^3.
%F A259059 a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - _Vincenzo Librandi_, Aug 13 2015
%p A259059 A259059:=n->2*n^2 + 36*n + 227: seq(A259059(n), n=0..50); # _Wesley Ivan Hurt_, Aug 13 2015
%t A259059 CoefficientList[Series[(227 - 416 x + 193 x^2)/(1 - x)^3, {x, 0, 50}], x] (* _Vincenzo Librandi_, Aug 13 2015 *)
%o A259059 (Magma) [2*n^2+36*n+227: n in [0..50]]; // _Vincenzo Librandi_, Aug 13 2015
%o A259059 (Magma) I:=[227, 265, 307]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]; // _Vincenzo Librandi_, Aug 13 2015
%o A259059 (PARI) a(n)=2*n^2+36*n+227 \\ _Charles R Greathouse IV_, Jun 17 2017
%Y A259059 Cf. A259058.
%K A259059 nonn,easy
%O A259059 0,1
%A A259059 _Wolfdieter Lang_, Aug 12 2015