cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259060 Numbers that are representable in at least two ways as sums of four distinct nonvanishing cubes.

This page as a plain text file.
%I A259060 #31 Mar 18 2025 21:07:23
%S A259060 6426,7900,9614,11592,13858,16436,19350,22624,26282,30348,34846,39800,
%T A259060 45234,51172,57638,64656,72250,80444,89262,98728,108866,119700,131254,
%U A259060 143552,156618,170476,185150,200664,217042,234308,252486,271600,291674
%N A259060 Numbers that are representable in at least two ways as sums of four distinct nonvanishing cubes.
%C A259060 This is the second part of Exercise 229 in Sierpiński's problem book. See p. 20, and p. 110 for the solution. He uses the identity (n-8)^3 + (n-1)^3 + (n+1)^3 + (n+8)^3 = 4*n^3 + 390 = (n-7)^3 + (n-4)^3 + (n+4)^3 + (n+7)^3, for n >= 9.
%C A259060 Here n is replaced by n + 9: (n+1)^3 + (n+8)^3 + (n+10)^3 + (n+17)^3 = 4*n^3  + 108*n^2 + 1362*n + 6426 = (n+2)^3 + (n+5)^3 + (n+13)^3 + (n+16)^3, for n >= 0.
%C A259060 There may be other numbers with this properties.
%C A259060 Because the summands have no common factor > 1 each of these two representations is called primitive. - _Wolfdieter Lang_, Aug 20 2015
%D A259060 W. Sierpiński, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970.
%H A259060 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F A259060 a(n) = (2*(n+9))*(2*n^2+36*n+357) = 2*A261241(n), n >= 0. See the comment for the sum of four distinct cubes in two different ways.
%F A259060 O.g.f.: 2*(3213 - 8902*x + 8285*x^2 - 2584*x^3) / (1-x)^4.
%F A259060 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - _Vincenzo Librandi_, Aug 13 2015
%e A259060 a(0) = 6426 = 1^3 + 8^3 + 10^3 + 17^3 = 2^3 + 5^3 + 13^3 + 16^3.
%e A259060 a(1) = 7900 = 2^3 + 9^3 + 11^3 + 18^3 = 3^3 + 6^3 + 14^3 + 17^3.
%t A259060 CoefficientList[Series[2 (3213 - 8902 x + 8285 x^2 - 2584 x^3)/(1 - x)^4, {x, 0, 50}], x] (* _Vincenzo Librandi_, Aug 13 2015 *)
%t A259060 LinearRecurrence[{4,-6,4,-1},{6426,7900,9614,11592},40] (* _Harvey P. Dale_, Sep 30 2016 *)
%o A259060 (Magma) [(2*(n+9))*(2*n^2+36*n+357): n in [0..50]]; // _Vincenzo Librandi_, Aug 13 2015
%o A259060 (Magma) I:=[6426,7900,9614,11592]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Aug 13 2015
%Y A259060 Cf. A261241, A259058 (squares).
%K A259060 nonn,easy
%O A259060 0,1
%A A259060 _Wolfdieter Lang_, Aug 12 2015