A259071 Decimal expansion of zeta'(-6) (the derivative of Riemann's zeta function at -6) (negated).
0, 0, 5, 8, 9, 9, 7, 5, 9, 1, 4, 3, 5, 1, 5, 9, 3, 7, 4, 5, 0, 6, 2, 9, 8, 7, 7, 4, 0, 8, 3, 9, 2, 0, 2, 5, 5, 7, 9, 8, 0, 1, 5, 3, 4, 6, 2, 0, 1, 5, 7, 1, 9, 5, 8, 6, 5, 2, 3, 9, 3, 9, 2, 2, 0, 6, 3, 5, 9, 7, 0, 3, 7, 5, 9, 4, 2, 4, 9, 0, 5, 7, 2, 3, 0, 2, 3, 8, 6, 3, 0, 0, 7, 5, 4, 2, 2, 5, 8, 3, 8, 5, 3, 6, 4, 8
Offset: 0
Examples
-0.0058997591435159374506298774083920255798015346201571958652393922063597...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1500
- Eric Weisstein's MathWorld, Riemann Zeta Function.
- Wikipedia, Riemann Zeta Function
- Index entries for constants related to zeta
Programs
-
Mathematica
Join[{0, 0}, RealDigits[Zeta'[-6], 10, 104] // First]
-
PARI
zeta'(-6) \\ Altug Alkan, Dec 11 2015
Formula
zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.
zeta'(-6) = -45*zeta(7)/(8*Pi^6) = -log(A(6)).