cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259073 Decimal expansion of zeta'(-8) (the derivative of Riemann's zeta function at -8).

Original entry on oeis.org

0, 0, 8, 3, 1, 6, 1, 6, 1, 9, 8, 5, 6, 0, 2, 2, 4, 7, 3, 5, 9, 5, 2, 4, 4, 2, 6, 5, 1, 0, 5, 3, 4, 2, 1, 4, 2, 2, 5, 6, 7, 4, 1, 2, 2, 9, 1, 8, 8, 2, 9, 9, 9, 9, 0, 4, 0, 2, 1, 0, 5, 3, 2, 7, 5, 3, 0, 5, 6, 9, 1, 7, 4, 0, 7, 8, 8, 1, 2, 3, 5, 3, 8, 3, 4, 8, 3, 4, 5, 2, 5, 1, 4, 5, 2, 4, 4, 0, 3, 5, 1, 7, 4, 1, 2, 6
Offset: 0

Views

Author

Jean-François Alcover, Jun 18 2015

Keywords

Examples

			0.0083161619856022473595244265105342142256741229188299990402105327530569174...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137.

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[Zeta'[-8], 10, 104] // First]
  • PARI
    zeta'(-8) \\ Altug Alkan, Dec 08 2015

Formula

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.
zeta'(-8) = 315*zeta(9)/(4*Pi^8) = -log(A(8)).