cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259077 Non-palindromic composite numbers such that n' = [Rev(n)]', where n' is the arithmetic derivative of n.

This page as a plain text file.
%I A259077 #10 Jun 29 2015 12:52:43
%S A259077 366,663,3245,3685,5423,5863,8178,8718,14269,15167,16237,18449,18977,
%T A259077 36679,73261,76151,77981,94481,96241,97663,140941,149041,150251,
%U A259077 152051,196891,198691,302363,308459,319853,335148,358913,363203,841533,921239,932129,954803,958099,990859
%N A259077 Non-palindromic composite numbers such that n' = [Rev(n)]', where n' is the arithmetic derivative of n.
%F A259077 Solutions to A003415(n) = A003415(A004086(n)), with A004086(n) <> n.
%e A259077 366' = 311 = 663';
%e A259077 3245' = 999 = 5423'; etc.
%p A259077 with(numtheory): T:=proc(w) local x,y,z; x:=w; y:=0;
%p A259077 for z from 1 to ilog10(x)+1 do y:=10*y+(x mod 10); x:=trunc(x/10);
%p A259077 od; y; end: P:=proc(q) local a,b,p,n;
%p A259077 for n from 1 to q do if not isprime(n) then if n<>T(n) then a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
%p A259077 b:=T(n)*add(op(2,p)/op(1,p),p=ifactors(T(n))[2]);
%p A259077 if a=b then print(n); fi; fi; fi; od; end: P(10^9);
%Y A259077 Cf. A003415, A004086, A085329, A097647.
%K A259077 nonn,base
%O A259077 1,1
%A A259077 _Paolo P. Lava_, Jun 18 2015