This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259084 #16 Jun 19 2015 16:34:00 %S A259084 86,68,58,35,41,14,27,44,10,14,16,16,9,10,8,7,14,16,14,8,6,9,4,23,8,0, %T A259084 14,10,12,10,6,14,5,8,5,13,7,16,7,17,6,3,9,9,16,7,12,11,4,13,7,16,8,9, %U A259084 3,10,4,9,6,4,5,13,3,12,7,9,6,8,4,39,13,12,10,4 %N A259084 a(n) = largest k such that the decimal representation of prime(n)^k does not contain the digit 0. %C A259084 These values are only conjectural. %C A259084 a(n) = 0 if prime(n) is in A062800. - _Robert Israel_, Jun 19 2015 %H A259084 Hiroaki Yamanouchi, <a href="/A259084/b259084.txt">Table of n, a(n) for n = 1..500</a> %H A259084 Popular Computing (Calabasas, CA), <a href="/A094776/a094776.jpg">Two Tables</a>, Vol. 1, (No. 9, Dec 1973), page PC9-16. %e A259084 a(1)=86 because 2^86 = 77371252455336267181195264 is conjectured to be the highest power of 2 that doesn't contain the digit 0. %p A259084 N:= 100: K:= 100: # to get a(1) to a(N), searching up to k = K %p A259084 for n from 1 to N do %p A259084 p:= ithprime(n); %p A259084 A[n]:= 0; %p A259084 for k from 1 to K do %p A259084 if not has(convert(p^k,base,10),0) then %p A259084 A[n]:= k %p A259084 fi %p A259084 od %p A259084 od: %p A259084 seq(A[n],n=1..N); # _Robert Israel_, Jun 19 2015 %Y A259084 Cf. A062800, A094776, A259081-A259086. %K A259084 nonn,base %O A259084 1,1 %A A259084 _N. J. A. Sloane_, Jun 18 2015 %E A259084 a(14)-a(57) from _Hiroaki Yamanouchi_, Jun 19 2015