A259092 Smallest k such that 2^k contains three adjacent copies of n in its decimal expansion.
242, 42, 43, 83, 44, 41, 157, 24, 39, 50, 949, 1841, 3661, 1798, 1701, 1161, 1806, 391, 1890, 2053, 950, 1164, 2354, 1807, 3816, 1800, 1799, 818, 1702, 2115, 904, 1798, 1807, 2270, 392, 1699, 3022, 394, 2054, 1758, 1804, 2300, 2720, 2403, 3396, 1133, 1808, 3820
Offset: 0
Examples
2^242 = 7067388259113537318333190002971674063309935587502475832486424805170479104 contains three adjacent 0's.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1000
- Popular Computing (Calabasas, CA), Two Tables, Vol. 1, (No. 9, Dec 1973), page PC9-16.
Programs
-
Mathematica
Table[k = 0; While[! SequenceCount[IntegerDigits[2^k], Flatten[ConstantArray[IntegerDigits[n], 3]]] > 0, k++]; k, {n, 0, 50}] (* Robert Price, May 17 2019 *)
-
Python
def A259092(n): s, k, k2 = str(n)*3, 0, 1 while True: if s in str(k2): return k k += 1 k2 *= 2 # Chai Wah Wu, Jun 18 2015
Extensions
More terms from Chai Wah Wu, Jun 18 2015
Comments