cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259094 From the Lecture Hall Theorem: array read by antidiagonals: T(n,k) = number of partitions of n into odd parts of size < 2k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 3, 4, 3, 1, 1, 1, 1, 2, 2, 3, 4, 4, 3, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 4, 1, 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 8, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2015

Keywords

Comments

The Lecture Hall Theorem states that (the number of partitions (d1,d2,...,dn) of m such that 0 <= d1/1 <= d2/2 <= ... <= dn/n) equals (the number of partitions of m into odd parts less than 2n).

Examples

			The array begins:
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ...
  1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14 ...
  1,1,1,2,2,3,4,4,5,6,7,8,9,10,11,13,14,15,17,18,20,22,23,25,27,29,31,33,35,37,40,42,44,47,49,52,55 ...
  1,1,1,2,2,3,4,5,6,7,9,10,12,14,16,19,21,24,27,30,34,38,42,46,51,56,61,67,73,79,86,93,100,108,116 ...
  1,1,1,2,2,3,4,5,6,8,10,11,14,16,19,23,26,30,35,40,45,52,58,65,74,82,91,102,113,124,138,151,165,182 ...
  1,1,1,2,2,3,4,5,6,8,10,12,15,17,21,25,29,34,40,46,53,62,70,80,91,103,116,131,147,164,184,204,227 ...
  1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,26,31,36,43,50,58,68,78,90,103,118,134,153,173,195,220,247,277 ...
  1,1,1,2,2,3,4,5,6,8,10,12,15,18,22,27,32,37,45,52,61,72,83,96,111,128,146,168,191,217,247,279,314 ...
  ...
The successive antidiagonals are:
  [1]
  [1, 1]
  [1, 1, 1]
  [1, 1, 1, 1]
  [1, 1, 1, 2, 1]
  [1, 1, 1, 2, 2, 1]
  [1, 1, 1, 2, 2, 2, 1]
  [1, 1, 1, 2, 2, 3, 3, 1]
  [1, 1, 1, 2, 2, 3, 4, 3, 1]
  [1, 1, 1, 2, 2, 3, 4, 4, 3, 1]
  [1, 1, 1, 2, 2, 3, 4, 5, 5, 4, 1]
  [1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 4, 1]
  [1, 1, 1, 2, 2, 3, 4, 5, 6, 7, 7, 4, 1]
  [1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 9, 8, 5, 1]
  ...
		

Crossrefs

Many rows of the array are already in the OEIS: A008620, A008672, A008673, A008674, A008675, A287997, A287998, A288000, A288001.

Programs

  • Maple
    G:=n->mul(1/(1-q^(2*i-1)),i=1..n);
    M:=41;
    G2:=n->seriestolist(series(G(n),q,M));
    for n from 1 to 10 do lprint(G2(n)); od:
    H:=n->[seq(G2(n-i+1)[i],i=1..n)];
    for n from 1 to 14 do lprint(H(n)); od:
  • Mathematica
    G[n_] := Product[1/(1-q^(2*i-1)), {i, 1, n}];
    M = 41;
    G2[n_] := CoefficientList[Series[G[n], {q, 0, M}], q];
    For[n = 1, n <= 10, n++; Print[G2[n]]];
    H[n_] := Table[G2[n-i+1][[i]], {i, 1, n}];
    Reap[For[n = 1, n <= 14, n++, Print[H[n]]; Sow[H[n]]]][[2, 1]] // Flatten (* Jean-François Alcover, Jun 04 2017, translated from Maple *)