cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259101 Square array read by antidiagonals arising in the enumeration of corners.

This page as a plain text file.
%I A259101 #21 Nov 07 2017 02:59:46
%S A259101 1,2,2,5,16,5,14,91,91,14,42,456,936,456,42,132,2145,7425,7425,2145,
%T A259101 132,429,9724,50765,85800,50765,9724,429,1430,43043,315315,805805,
%U A259101 805805,315315,43043,1430,4862,187408,1831648,6584032,9962680,6584032,1831648,187408,4862,16796,806208,10127988,48674808,103698504,103698504,48674808,10127988,806208,16796
%N A259101 Square array read by antidiagonals arising in the enumeration of corners.
%C A259101 See Kreweras (1979) for precise definition.
%H A259101 G. Kreweras, <a href="http://dx.doi.org/10.1016/0012-365X(79)90163-8">Sur les extensions linéaires d'une famille particulière d'ordres partiels</a>, Discrete Math., 27 (1979), 279-295.
%H A259101 G. Kreweras, <a href="/A006330/a006330_1.pdf">Sur les extensions linéaires d'une famille particulière d'ordres partiels</a>, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
%F A259101 Kreweras gives an explicit formula for the general term (see bottom display on page 291).
%e A259101 The first few antidiagonals are:
%e A259101     1,
%e A259101     2,    2,
%e A259101     5,   16,    5,
%e A259101    14,   91,   91,   14,
%e A259101    42,  456,  936,  456,   42,
%e A259101   132, 2145, 7425, 7425, 2145, 132,
%e A259101   ...
%t A259101 a[x_, y_] := (2(2x+2y+1)!(x^2+3x*y+y^2+4x+4y+3)) / (x!(x+1)!y!(y+1)!(x+y+1)(x+y+2)(x+y+3));
%t A259101 Table[Table[a[x-y, y], {y, 0, x}] // Reverse, {x, 0, 9}] // Flatten (* _Jean-François Alcover_, Aug 11 2017 *)
%Y A259101 The first row and column of the array are the Catalan numbers A000108.
%Y A259101 The second row and column are A214824.
%K A259101 nonn,tabl,easy
%O A259101 0,2
%A A259101 _N. J. A. Sloane_, Jun 22 2015
%E A259101 More terms from _Jean-François Alcover_, Aug 11 2017