This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259102 #16 Aug 15 2015 11:51:28 %S A259102 111,11111,1111111,11111111111,1111111111111,11111111111111111, %T A259102 11111111111111111111111111111,1111111111111111111111111111111, %U A259102 1111111111111111111111111111111111111,11111111111111111111111111111111111111111,1111111111111111111111111111111111111111111 %N A259102 Composite repunits with a prime number of 1's. %H A259102 Alois P. Heinz, <a href="/A259102/b259102.txt">Table of n, a(n) for n = 1..164</a> %H A259102 R. Ondrejka, <a href="/A000522/a000522.pdf">Letter to N. J. A. Sloane, May 15 1976</a> %p A259102 f:=n->(10^n-1)/9; [f(3),f(5),f(7),f(11),f(13),f(17),f(29),f(31),f(37),f(41),f(43),f(47)]; # cf. A004023 %p A259102 # second Maple program: %p A259102 r:= n-> (10^n-1)/9: %p A259102 b:= proc(n) option remember; local p; %p A259102 p:=`if`(n=1, 1, b(n-1)); %p A259102 do p:= nextprime(p); %p A259102 if not isprime(r(p)) then return p fi %p A259102 od %p A259102 end: %p A259102 a:= n-> r(b(n)): %p A259102 seq(a(n), n=1..15); # _Alois P. Heinz_, Jun 25 2015 %Y A259102 Cf. A002275, A004022, A004023, A031974, A179005. %K A259102 nonn,base %O A259102 1,1 %A A259102 _N. J. A. Sloane_, Jun 23 2015