cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259114 Number of rooted binary unordered tanglegrams of size n.

This page as a plain text file.
%I A259114 #29 Sep 15 2015 05:47:41
%S A259114 1,1,2,10,69,807,13048,269221,6660455,191411477,6257905519,
%T A259114 229312906604,9309547057292,414803750101863
%N A259114 Number of rooted binary unordered tanglegrams of size n.
%C A259114 Binary tanglegrams are pairs of bifurcating (degree 3 internal node) trees with a bijection between the leaves of the trees. Two tanglegrams are isomorphic if there is an isomorphism between the trees that preserves the bijection. Rooted means that the tanglegram is composed of rooted trees, and unordered means that two tanglegrams that differ by exchanging the trees and inverting the bijection are considered identical.
%H A259114 S. C. Billey, M. Konvalinka, and F. A. Matsen IV, <a href="http://arxiv.org/abs/1507.04976">On the enumeration of tanglegrams and tangled chains</a>, arXiv:1507.04976 [math.CO], 2015.
%H A259114 Ira M. Gessel, <a href="http://arxiv.org/abs/1509.03867">Counting tanglegrams with species</a>, arXiv:1509.03867 [math.CO], (13-September-2015)
%H A259114 F. A. Matsen IV, S. C. Billey, D. A. Kas, and M. Konvalinka, <a href="http://arxiv.org/abs/1507.04784">Tanglegrams: a reduction tool for mathematical phylogenetics</a>, arXiv:1507.04784 [q-bio.PE], 2015.
%H A259114 Frederick A. Matsen, <a href="https://github.com/matsengrp/tangle">Sage/GAP4 Code for generating tanglegrams</a>
%Y A259114 Cf. A258620 (tanglegrams), A259115, A259116, A258486 (tangled chains), A258487, A258488, A258489.
%K A259114 nonn,more
%O A259114 1,3
%A A259114 _Frederick A. Matsen IV_, Jun 18 2015
%E A259114 More terms from _Ira M. Gessel_, Jul 19 2015