A259147 Decimal expansion of phi(exp(-Pi/2)), where phi(q) = Product_{n>=1} (1-q^n) is the Euler modular function.
7, 4, 9, 3, 1, 1, 4, 7, 7, 8, 0, 0, 0, 0, 2, 7, 8, 7, 4, 2, 9, 6, 2, 5, 6, 5, 8, 7, 8, 3, 3, 8, 0, 3, 1, 1, 9, 0, 4, 0, 9, 2, 5, 2, 7, 9, 0, 1, 1, 7, 3, 9, 2, 8, 3, 1, 2, 0, 6, 7, 3, 1, 0, 1, 3, 1, 3, 5, 8, 8, 5, 3, 7, 5, 5, 1, 7, 4, 7, 2, 5, 8, 6, 1, 3, 4, 7, 5, 6, 3, 5, 7, 6, 5, 5, 8, 5, 8, 4, 0, 4, 6, 3, 7, 9
Offset: 0
Examples
0.74931147780000278742962565878338031190409252790117392831206731...
Links
- Istvan Mezo, Several special values of Jacobi theta functions, arXiv:1106.2703 [math.CA], 2011-2013.
- Eric Weisstein's MathWorld, Infinite Product
- Eric Weisstein's MathWorld, Jacobi Theta Functions
- Eric Weisstein's MathWorld, q-Pochhammer Symbol
- Wikipedia, Euler function
Crossrefs
Cf. A048651 phi(1/2), A100220 phi(1/3), A100221 phi(1/4), A100222 phi(1/5), A132034 phi(1/6), A132035 phi(1/7), A132036 phi(1/8), A132037 phi(1/9), A132038 phi(1/10), A368211 phi(exp(-Pi/16)), A292862 phi(exp(-Pi/8)), A292863 phi(exp(-Pi/4)), A259148 phi(exp(-Pi)), A259149 phi(exp(-2*Pi)), A292888 phi(exp(-3*Pi)), A259150 phi(exp(-4*Pi)), A292905 phi(exp(-5*Pi)), A363018 phi(exp(-6*Pi)), A259151 phi(exp(-8*Pi)), A363019 phi(exp(-10*Pi)), A363020 phi(exp(-12*Pi)), A292864 phi(exp(-16*Pi)), A363021 phi(exp(-20*Pi)).
Programs
-
Mathematica
phi[q_] := QPochhammer[q, q]; RealDigits[phi[Exp[-Pi/2]], 10, 105] // First
Formula
phi(q) = QPochhammer(q,q) = (q;q)_infinity.
phi(q) also equals theta'(1, 0, sqrt(q))^(1/3)/(2^(1/3)*q^(1/24)), where theta' is the derivative of the elliptic theta function theta(a,u,q) w.r.t. u.
phi(exp(-Pi/2)) = ((sqrt(2) - 1)^(1/3)*(4 + 3*sqrt(2))^(1/24) * exp(Pi/48) * Gamma(1/4))/(2^(5/6)*Pi^(3/4)).
phi(exp(-Pi/2)) = (sqrt(2)-1)^(1/4) * exp(Pi/48) * Gamma(1/4)/(2^(13/16)*Pi^(3/4)). - Vaclav Kotesovec, Jul 03 2017