This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259208 #15 Jul 09 2019 01:17:54 %S A259208 1,1,3,1,25,1,721,1,6721,181441,151201,1,203575681,1,121080961, %T A259208 108972864001,3491282995201,1,133541574566401,1,304119455447808001, %U A259208 212878925715456001,309744468633601,1,17665560315112008499201,646300418472124416000001,841941782922240001 %N A259208 E.g.f.: Sum_{n>=0} x^n * (1 + x^n)^n / n!. %C A259208 More generally, the following sums are equal: %C A259208 (1) Sum_{n>=0} (q^n + p)^n * r^n/n!, %C A259208 (2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!; %C A259208 here, q = x, p = 1, r = x. - _Paul D. Hanna_, Jul 03 2019 %C A259208 In general, let F(x) be a formal power series in x such that F(0)=1, then %C A259208 Sum_{n>=0} m^n * F(q^n*r)^p * log( F(q^n*r) )^n / n! = %C A259208 Sum_{n>=0} r^n * [y^n] F(y)^(m*q^n + p); %C A259208 here, F(x) = exp(x), q = , p = 1, r = x, m = 1. - _Paul D. Hanna_, Jul 06 2019 %H A259208 Paul D. Hanna, <a href="/A259208/b259208.txt">Table of n, a(n) for n = 0..1025</a> %F A259208 E.g.f.: Sum_{n>=0} x^(n*(n+1)) * exp(x^(n+1)) / n!. %F A259208 a(n) = Sum_{d|n} binomial(d, n/d - 1) * n!/d!. %e A259208 E.g.f.: A(x) = 1 + x + 3*x^2/2! + x^3/3! + 25*x^4/4! + x^5/5! + 721*x^6/6! + x^7/7! + 6721*x^8/8! + 181441*x^9/9! +... %e A259208 where %e A259208 A(x) = 1 + x*(1+x) + x^2*(1+x^2)^2/2! + x^3*(1+x^3)^3/3! + x^4*(1+x^4)^4/4! + x^5*(1+x^5)^5/5! + x^6*(1+x^6)^6/6! +... %e A259208 also %e A259208 A(x) = exp(x) + x^2*exp(x^2) + x^6*exp(x^3)/2! + x^12*exp(x^4)/3! + x^20*exp(x^5)/4! + x^30*exp(x^6)/5! + x^42*exp(x^7)/6! +... %e A259208 RELATED SERIES. %e A259208 Below we illustrate the following identity at specific values of x: %e A259208 Sum_{n>=0} x^n * (1 + x^n)^n / n! = Sum_{n>=0} x^(n*(n+1)) * exp(x^(n+1)) / n!. %e A259208 (1) At x = 1/2, the following sums are equal %e A259208 S1 = Sum_{n>=0} 2^(-n*(n+1)) * (2^n + 1)^n / n!, %e A259208 S1 = Sum_{n>=0} 2^(-n*(n+1)) * exp( 1/2^(n+1) ) / n!, %e A259208 where S1 = 1.97862370255774939923047215233920359461142155926360261512472... %e A259208 (2) At x = 1/3, the following sums are equal %e A259208 S2 = Sum_{n>=0} 3^(-n*(n+1)) * (3^n + 1)^n / n!, %e A259208 S2 = Sum_{n>=0} 3^(-n*(n+1)) * exp( 1/3^(n+1) ) / n!, %e A259208 where S2 = 1.52049327799122758174016893855657751957768595647287750170026... %o A259208 (PARI) {a(n) = local(A=1); A = sum(m=0, n, x^m/m!*(1 + x^m +x*O(x^n))^m); n!*polcoeff(A, n)} %o A259208 for(n=0, 30, print1(a(n), ", ")) %o A259208 (PARI) {a(n) = local(A=1); A = sum(m=0, n, x^(m*(m+1)) / m! * exp(x^(m+1) +x*O(x^n))); n!*polcoeff(A, n)} %o A259208 for(n=0, 30, print1(a(n), ", ")) %o A259208 (PARI) {a(n) = if(n==0,1, sumdiv(n,d, binomial(d, n/d-1) * n!/d! ) )} %o A259208 for(n=0, 30, print1(a(n), ", ")) %Y A259208 Cf. A326096. %K A259208 nonn %O A259208 0,3 %A A259208 _Paul D. Hanna_, Jun 21 2015