This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259222 #17 Oct 09 2020 12:13:02 %S A259222 7,13,13,24,23,24,45,40,40,45,85,71,66,71,85,162,127,112,112,127,162, %T A259222 311,230,192,183,192,230,311,601,421,334,303,303,334,421,601,1168,779, %U A259222 588,510,487,510,588,779,1168,2281,1456,1048,869,798,798,869,1048,1456,2281 %N A259222 T(n,k) is the number of (n+1) X (k+1) 0..1 arrays with each 2 X 2 subblock having clockwise pattern 0000 0011 or 0101. %C A259222 Table starts %C A259222 7 13 24 45 85 162 311 601 1168 2281 4473 8802 17371 %C A259222 13 23 40 71 127 230 421 779 1456 2747 5227 10022 19345 %C A259222 24 40 66 112 192 334 588 1048 1890 3448 6360 11854 22308 %C A259222 45 71 112 183 303 510 869 1499 2616 4619 8251 14910 27249 %C A259222 85 127 192 303 487 798 1325 2227 3784 6499 11283 19806 35161 %C A259222 162 230 334 510 798 1278 2078 3422 5694 9566 16222 27774 48030 %C A259222 311 421 588 869 1325 2078 3319 5377 8804 14545 24225 40670 68843 %C A259222 601 779 1048 1499 2227 3422 5377 8591 13888 22655 37231 61598 102589 %C A259222 1168 1456 1890 2616 3784 5694 8804 13888 22210 35872 58368 95550 157276 %C A259222 2281 2747 3448 4619 6499 9566 14545 22655 35872 57455 92767 150686 245965 %C A259222 Each row (and each column, by symmetry) has a rational generating function (and therefore a linear recurrence with constant coefficients) because the growth from an array to the next larger one is described by the transfer matrix method. - _R. J. Mathar_, Oct 09 2020 %H A259222 R. H. Hardin, <a href="/A259222/b259222.txt">Table of n, a(n) for n = 1..480</a> %F A259222 Empirical for diagonal and column k (k=3..7 recurrences work also for k=1,2): %F A259222 diagonal: a(n) = 6*a(n-1) - 10*a(n-2) - 2*a(n-3) + 16*a(n-4) - 6*a(n-5) - 5*a(n-6) + 2*a(n-7). %F A259222 k=1: a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) %F A259222 k=2: a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) %F A259222 k=3: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4) %F A259222 k=4: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4) %F A259222 k=5: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4) %F A259222 k=6: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4) %F A259222 k=7: a(n) = 4*a(n-1) - 4*a(n-2) - a(n-3) + 2*a(n-4) %F A259222 Empirical: T(n,k) = 2^(k+1) + 2^(n+1) + F(n+3)*F(k+3) - 2*F(n+3) - 2*F(k+3) + 2 = 2^(n+1) + A001911(k)*F(n+3) + A234933(k+1) = A234933(n+1) + A234933(k+1) + A143211(n+3,k+3) - 2, F=A000045. - _Ehren Metcalfe_, Dec 27 2018 %e A259222 Some solutions for n=4, k=4: %e A259222 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 1 0 %e A259222 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 %e A259222 1 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 0 %e A259222 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 %e A259222 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 %Y A259222 Cf. A259215, A259216, A259217, A259218, A259219, A259220, A259221. %K A259222 nonn,tabl %O A259222 1,1 %A A259222 _R. H. Hardin_, Jun 21 2015