cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A259248 Number of (n+1)X(6+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 0011 or 0111.

Original entry on oeis.org

588, 5216, 41552, 361728, 2964676, 25462352, 211569948, 1802996568, 15090948960, 128059095616, 1076133958644, 9111215773728, 76735453511764, 648920372600856, 5472076754002096, 46246969544401512, 390256929158755132
Offset: 1

Views

Author

R. H. Hardin, Jun 22 2015

Keywords

Comments

Column 6 of A259250

Examples

			Some solutions for n=3
..1..1..0..1..1..1..1....0..0..1..0..0..0..0....0..1..0..0..1..1..1
..0..1..0..1..0..1..0....0..0..1..0..0..0..0....1..1..0..0..1..0..0
..0..1..0..1..1..1..0....1..1..1..1..1..1..1....0..1..1..1..1..1..1
..0..1..0..1..0..1..0....0..1..0..0..1..0..0....1..1..0..0..1..0..0
		

Crossrefs

Formula

Empirical: a(n) = 18*a(n-1) +4*a(n-2) -1673*a(n-3) +5523*a(n-4) +59794*a(n-5) -285439*a(n-6) -1125159*a(n-7) +6632986*a(n-8) +12721025*a(n-9) -87684501*a(n-10) -94080286*a(n-11) +710791611*a(n-12) +488130615*a(n-13) -3604094066*a(n-14) -1833458263*a(n-15) +11326266573*a(n-16) +4724718346*a(n-17) -21581019805*a(n-18) -7446002885*a(n-19) +24486208594*a(n-20) +6596083231*a(n-21) -16015478187*a(n-22) -3007670078*a(n-23) +5645651298*a(n-24) +594934259*a(n-25) -947418958*a(n-26) -24710432*a(n-27) +60791760*a(n-28) -1899504*a(n-29) -988000*a(n-30) +58880*a(n-31)

A259242 Number of (n+1)X(n+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 0011 or 0111.

Original entry on oeis.org

9, 65, 720, 14425, 451481, 25462352, 2259371001, 359730429763, 90571705672192, 40745743533702439, 29115984372311031043, 37023356202692415717856, 75090733417483065667600023, 269938147719275944289836747059
Offset: 1

Views

Author

R. H. Hardin, Jun 22 2015

Keywords

Comments

Diagonal of A259250

Examples

			Some solutions for n=4
..1..1..1..1..0....0..0..1..0..0....1..1..0..0..1....0..1..0..0..1
..0..0..0..1..0....1..1..1..1..1....0..1..1..1..1....1..1..1..1..1
..0..0..0..1..1....1..0..1..0..0....0..1..0..1..0....1..0..1..0..1
..1..1..1..1..0....1..1..1..1..1....0..1..0..1..0....1..1..1..1..1
..0..1..0..1..1....1..0..0..0..1....1..1..1..1..0....1..0..0..1..0
		

Crossrefs

A259243 Number of (n+1) X (1+1) 0..1 arrays with each 2 X 2 subblock having clockwise pattern 0000 0011 or 0111.

Original entry on oeis.org

9, 21, 48, 111, 255, 588, 1353, 3117, 7176, 16527, 38055, 87636, 201801, 464709, 1070112, 2464239, 5674575, 13067292, 30091017, 69292893, 159565944, 367444623, 846142455, 1948476324, 4486903689, 10332332661, 23793043728, 54790041711
Offset: 1

Views

Author

R. H. Hardin, Jun 22 2015

Keywords

Examples

			Some solutions for n=4:
..1..0....1..1....1..0....0..1....1..0....1..1....1..1....1..0....0..1....0..1
..1..0....1..0....1..1....1..1....1..1....0..1....0..1....1..1....1..1....1..1
..1..1....1..0....0..1....0..1....0..0....1..1....0..1....0..1....1..0....0..0
..0..0....1..1....1..1....1..1....1..1....0..1....1..1....1..1....1..1....1..1
..1..1....0..1....0..0....0..1....0..0....0..1....0..0....1..0....1..0....0..0
		

Crossrefs

Column 1 of A259250.

Formula

Empirical: a(n) = a(n-1) + 3*a(n-2).
Conjectures from Colin Barker, Dec 24 2018: (Start)
G.f.: 3*x*(3 + 4*x) / (1 - x - 3*x^2).
a(n) = (2^(-n)*((1-sqrt(13))^n*(-7+2*sqrt(13)) + (1+sqrt(13))^n*(7+2*sqrt(13)))) / sqrt(13).
(End)

A259244 Number of (n+1) X (2+1) 0..1 arrays with each 2 X 2 subblock having clockwise pattern 0000 0011 or 0111.

Original entry on oeis.org

21, 65, 192, 581, 1733, 5216, 15613, 46897, 140568, 421901, 1265269, 3796472, 11387877, 34165857, 102492080, 307483605, 922431077, 2767317200, 8301880013, 24905716177, 74716886152, 224150891421, 672451700885, 2017355772136
Offset: 1

Views

Author

R. H. Hardin, Jun 22 2015

Keywords

Examples

			Some solutions for n=4:
..0..1..0....1..0..0....1..0..0....1..1..1....0..1..0....0..0..1....0..1..1
..0..1..0....1..0..0....1..1..1....0..0..1....1..1..1....1..1..1....0..1..0
..1..1..1....1..1..1....1..0..0....1..1..1....1..0..0....0..0..1....1..1..0
..0..0..0....1..0..0....1..1..1....0..1..0....1..1..1....1..1..1....0..1..1
..1..1..1....1..1..1....1..0..0....0..1..0....1..0..0....0..0..0....1..1..0
		

Crossrefs

Column 2 of A259250.

Formula

Empirical: a(n) = 3*a(n-1) + 4*a(n-2) - 11*a(n-3) - 3*a(n-4).
Empirical g.f.: x*(21 + 2*x - 87*x^2 - 24*x^3) / ((1 - 3*x)*(1 - 4*x^2 - x^3)). - Colin Barker, Dec 24 2018

A259245 Number of (n+1) X (3+1) 0..1 arrays with each 2 X 2 subblock having clockwise pattern 0000 0011 or 0111.

Original entry on oeis.org

48, 192, 720, 2816, 10720, 41552, 159168, 614560, 2360464, 9098240, 34986848, 134750672, 518448960, 1996103456, 7681731600, 29571245952, 113812664288, 438098128720, 1686212575424, 6490526009760, 24982143580048, 96159317085952
Offset: 1

Views

Author

R. H. Hardin, Jun 22 2015

Keywords

Examples

			Some solutions for n=4:
..1..1..0..0....0..1..0..1....0..0..0..1....0..1..0..0....0..1..0..0
..0..1..1..1....1..1..0..1....1..1..1..1....0..1..0..0....1..1..1..1
..0..1..0..1....0..1..0..1....0..0..1..0....1..1..0..0....0..1..0..1
..0..1..1..1....1..1..1..1....1..1..1..1....0..1..0..0....1..1..1..1
..1..1..0..1....1..0..1..0....1..0..0..1....0..1..0..0....0..0..0..0
		

Crossrefs

Column 3 of A259250.

Formula

Empirical: a(n) = 2*a(n-1) + 12*a(n-2) - 11*a(n-3) - 30*a(n-4).
Empirical g.f.: 16*x*(3 + 6*x - 15*x^2 - 25*x^3) / (1 - 2*x - 12*x^2 + 11*x^3 + 30*x^4). - Colin Barker, Dec 24 2018

A259246 Number of (n+1)X(4+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 0011 or 0111.

Original entry on oeis.org

111, 581, 2816, 14425, 71313, 361728, 1803859, 9106657, 45601304, 229700941, 1152550829, 5799573000, 29129216479, 146507741197, 736226561792, 3702139968817, 18608625262249, 93565783612448, 470365315223067
Offset: 1

Views

Author

R. H. Hardin, Jun 22 2015

Keywords

Comments

Column 4 of A259250

Examples

			Some solutions for n=4
..0..1..1..1..1....1..0..0..1..0....0..0..0..1..0....0..1..1..1..0
..1..1..0..0..0....1..1..1..1..1....1..1..1..1..0....0..1..0..1..1
..0..1..0..0..0....0..0..0..0..1....0..1..0..1..0....1..1..0..1..0
..1..1..1..1..1....1..1..1..1..1....0..1..0..1..1....0..1..1..1..0
..1..0..1..0..0....0..1..0..1..0....0..1..0..1..0....0..1..0..1..1
		

Crossrefs

Formula

Empirical: a(n) = 7*a(n-1) +12*a(n-2) -141*a(n-3) +15*a(n-4) +798*a(n-5) -177*a(n-6) -1505*a(n-7) -48*a(n-8) +375*a(n-9) -a(n-10) -6*a(n-11)

A259247 Number of (n+1)X(5+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 0011 or 0111.

Original entry on oeis.org

255, 1733, 10720, 71313, 451481, 2964676, 18970267, 123694345, 795726064, 5169185873, 33344636925, 216190905756, 1396553927379, 9045384191389, 58474650871712, 378535391931953, 2448013308032361, 15842822807262836
Offset: 1

Views

Author

R. H. Hardin, Jun 22 2015

Keywords

Comments

Column 5 of A259250

Examples

			Some solutions for n=4
..0..1..0..0..0..1....1..1..1..1..1..1....1..1..1..0..0..0....1..0..0..0..1..0
..1..1..1..1..1..1....0..1..0..0..1..0....1..0..1..1..1..1....1..0..0..0..1..1
..0..0..0..0..1..0....0..1..0..0..1..0....1..0..1..0..0..0....1..1..1..1..1..0
..1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....0..1..0..0..1..0
..1..0..1..0..0..0....0..0..0..1..0..1....0..0..0..1..0..0....0..1..1..1..1..1
		

Crossrefs

Formula

Empirical: a(n) = 6*a(n-1) +49*a(n-2) -268*a(n-3) -920*a(n-4) +4050*a(n-5) +9218*a(n-6) -25662*a(n-7) -49822*a(n-8) +62672*a(n-9) +120020*a(n-10) -35270*a(n-11) -81969*a(n-12) +4820*a(n-13) +15497*a(n-14) -596*a(n-15) -536*a(n-16) +24*a(n-17)

A259249 Number of (n+1)X(7+1) 0..1 arrays with each 2X2 subblock having clockwise pattern 0000 0011 or 0111.

Original entry on oeis.org

1353, 15613, 159168, 1803859, 18970267, 211569948, 2259371001, 24946035357, 268635598788, 2948447364239, 31900157480147, 348917447759080, 3785118935837593, 41318554169121573, 448913396152129472
Offset: 1

Views

Author

R. H. Hardin, Jun 22 2015

Keywords

Comments

Column 7 of A259250

Examples

			Some solutions for n=3
..0..1..1..1..1..1..0..0....1..1..0..0..1..0..0..1....0..1..0..0..1..0..1..0
..0..1..0..0..0..1..0..0....0..1..1..1..1..1..1..1....0..1..1..1..1..1..1..1
..1..1..1..1..1..1..1..1....0..1..0..0..0..1..0..0....0..1..0..1..0..0..0..1
..1..0..0..0..1..0..0..0....1..1..1..1..1..1..1..1....0..1..1..1..0..0..0..1
		

Crossrefs

Formula

Empirical recurrence of order 54 (see link above)
Showing 1-8 of 8 results.