This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259252 #19 Sep 08 2022 08:46:13 %S A259252 1,2,5,9,13,16,24,25,27,28,30,37,38,39,46,50,51,55,57,59,67,68,71,79, %T A259252 80,82,88,93,99,105,108,118,122,125,127,133,141,145,148,152,155,157, %U A259252 161,162,164,179,189,191,194,196,215,228,232,237,242,247,263,281 %N A259252 Numbers n such that 1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6 is prime. %H A259252 Robert Price, <a href="/A259252/b259252.txt">Table of n, a(n) for n = 1..885</a> %H A259252 OEIS Wiki, <a href="https://oeis.org/wiki/Cyclotomic Polynomials at x=n, n! and sigma(n)">Cyclotomic Polynomials at x=n, n! and sigma(n)</a> %p A259252 with(numtheory): A259252:=n->`if`(isprime(1 + sigma(n) + sigma(n)^2 + sigma(n)^3 + sigma(n)^4 + sigma(n)^5 + sigma(n)^6), n, NULL): seq(A259252(n), n=1..500); # _Wesley Ivan Hurt_, Jul 09 2015 %t A259252 Select[Range[10000], PrimeQ[ 1 + DivisorSigma[1, #] + DivisorSigma[1, #]^2 + DivisorSigma[1, #]^3 + DivisorSigma[1, #]^4 + DivisorSigma[1, #]^5 + DivisorSigma[1, #]^6] &] %t A259252 Select[Range[10000], PrimeQ[ Cyclotomic[7, DivisorSigma[1, #]]] &] %o A259252 (PARI) isok(n) = isprime(polcyclo(7, sigma(n))); \\ _Michel Marcus_, Jun 23 2015 %o A259252 (Magma) [n: n in [1..500] | IsPrime(1 + DivisorSigma(1, n) + DivisorSigma(1, n)^2 + DivisorSigma(1, n)^3 + DivisorSigma(1, n)^4 + DivisorSigma(1, n)^5+ DivisorSigma(1, n)^6)]; // _Vincenzo Librandi_, Jun 24 2015 %Y A259252 Cf. A000203, A259251, A259253. %K A259252 easy,nonn %O A259252 1,2 %A A259252 _Robert Price_, Jun 22 2015