A259280 a(n) is the minimal sum of a positive integer sequence of length n with no duplicate substrings of length greater than 1.
1, 2, 4, 5, 7, 9, 11, 14, 16, 19, 21, 24, 27, 30, 33, 36, 40, 43, 47, 50, 54, 57, 61, 65, 69, 73, 77, 81, 85, 90, 94, 99, 103, 108, 112, 117, 121, 126, 131, 136, 141, 146, 151, 156, 161, 166, 172, 177, 183, 188, 194, 199, 205, 210, 216, 221, 227, 233, 239, 245
Offset: 1
Keywords
Examples
Lexicographically earliest examples: a(1) = 1 via [1] a(2) = 2 via [1, 1] a(3) = 4 via [1, 1, 2] a(4) = 5 via [1, 1, 2, 1] a(5) = 7 via [1, 1, 2, 2, 1] a(6) = 9 via [1, 1, 2, 1, 3, 1] a(7) = 11 via [1, 1, 2, 2, 1, 3, 1] a(8) = 14 via [1, 1, 2, 1, 3, 1, 4, 1] a(9) = 16 via [1, 1, 2, 1, 3, 2, 2, 3, 1] a(10) = 19 via [1, 1, 2, 1, 3, 2, 2, 3, 3, 1] a(11) = 21 via [1, 1, 2, 1, 3, 2, 2, 3, 1, 4, 1] a(12) = 24 via [1, 1, 2, 1, 3, 2, 2, 3, 3, 1, 4, 1] a(13) = 27 via [1, 1, 2, 1, 3, 1, 4, 2, 2, 3, 2, 4, 1]
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
Programs
-
Ruby
def a259280(n) lower_bound = 0.5 * (a060432(n - 1) + n + 1) lower_bound.ceil end
Formula
a(1) = 1, a(n) = ceiling((n + 1 + A060432(n - 1))/2) for n > 1.
Comments