This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259287 #14 Feb 16 2025 08:33:25 %S A259287 1,0,1,1,0,2,1,1,0,1,0,1,1,0,1,1,1,1,1,0,3,0,0,1,1,1,1,0,0,0,2,0,0,2, %T A259287 1,2,0,0,1,2,0,1,1,0,1,3,0,1,1,0,0,1,0,1,0,0,2,0,0,2,2,1,1,1,0,0,1,0, %U A259287 1,1,2,0,2,0,2,2,0,1,0,0,2,1,0,0,0,0,1 %N A259287 Expansion of psi(x^2) * f(x^3, x^5) in powers of x where psi(), f(, ) are Ramanujan theta functions. %C A259287 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %H A259287 G. C. Greubel, <a href="/A259287/b259287.txt">Table of n, a(n) for n = 0..1000</a> %H A259287 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a> %H A259287 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a> %F A259287 Number of solutions to 16*n + 5 = (8*u + 1)^2 + (8*v + 2)^2 where u,v in Z. %F A259287 Euler transform of period 16 sequence [ 0, 1, 1, -1, 1, 0, 0, -2, 0, 0, 1, -1, 1, 1, 0, -2, ...]. %F A259287 a(9*n + 1) = a(9*n + 4) = 0. a(9*n + 7) = A259285(n). %F A259287 -2 * a(n) = A134343(4*n + 1). a(n) = A000161(16*n + 5) = A025426(16*n + 5) = A025435(16*n + 5) = A025441(16*n + 5). %e A259287 G.f. = 1 + x^2 + x^3 + 2*x^5 + x^6 + x^7 + x^9 + x^11 + x^12 + x^14 + ... %e A259287 G.f. = q^5 + q^37 + q^53 + 2*q^85 + q^101 + q^117 + q^149 + q^181 + q^197 + ... %t A259287 a[ n_] := SeriesCoefficient[ QPochhammer[ -x^2, x^8] QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ -x^6, x^8] QPochhammer[x^8]^2, {x, 0, n}]; %t A259287 a[ n_] := SeriesCoefficient[ Product[(1 + x^(8 k - 2)) (1 + x^(8 k - 3)) (1 + x^(8 k - 5)) (1 + x^(8 k - 6)) (1 - x^(8 k))^2, {k, Ceiling[n/8]}], {x, 0, n}]; %o A259287 (PARI) {a(n) = my(m, s, x, c); if( n<0, 0, s = sqrtint(m = 16*n + 5); for(u = (s+1)\-8, (s-1)\8, if( issquare( m - (8*u + 1)^2, &x) && (x%8==2 || x%8==6), c++))); c}; %o A259287 (PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k)^[ 2, 0, -1, -1, 1, -1, 0, 0, 2, 0, 0, -1, 1, -1, -1, 0][k%16 + 1], 1 + x * O(x^n)), n))}; %Y A259287 Cf. A000161, A025426, A025435, A025441, A134343, A259285. %K A259287 nonn %O A259287 0,6 %A A259287 _Michael Somos_, Jun 23 2015