This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259301 #16 Aug 27 2015 10:58:55 %S A259301 0,0,1,1,3,3,3,2,4,4,3,4,5,7,8,5,8,7,8,9,10,10,11,12,12,14,13,13,12, %T A259301 15,14,14,17,14,19,17,12,18,13,19,20,22,20,23,21,15,21,21,23,25,26,23, %U A259301 26,26,19,23,27,24,29,27,26,28,31,29,30,25,30,29,34,30 %N A259301 Taken over all those prime-partitionable numbers m for which there exists a 2-partition of the set of primes < m that has one subset containing two primes only, a(n) is the frequency with which the smaller prime occurs, where n is the prime index. %C A259301 A number n is called a prime partitionable number if there is a partition {P1,P2} of the primes less than n such that for any composition n1+n2=n, either there is a prime p in P1 such that p | n1 or there is a prime p in P2 such that p | n2. %C A259301 To demonstrate that a positive integer m is prime-partitionable, a suitable 2-partition {P1, P2} of the set of primes < m must be found. In this sequence we are interested in prime-partitionable numbers such that P1 contains 2 odd primes. %C A259301 Conjecture: If P1 = {p1a, p1b} with p1a and p1b odd primes, p1a < p1b and p1b = 2*k*p1a + 1 for some positive integer k such that 2*k <= p1a - 3 and if m = p1a + p1b then m is prime-partitionable. %H A259301 Christopher Hunt Gribble, <a href="/A259301/b259301.txt">Table of n, a(n) for n = 1..9592</a> %e A259301 The table below shows all p1a and p1b pairs for p1a <= 29 that demonstrate that m is prime-partitionable. %e A259301 . n p1a p1b 2k m %e A259301 . 3 5 11 2 16 %e A259301 . 4 7 29 4 36 %e A259301 . 5 11 23 2 34 %e A259301 . 11 67 6 78 %e A259301 . 11 89 8 100 %e A259301 . 6 13 53 4 66 %e A259301 . 13 79 6 92 %e A259301 . 13 131 10 144 %e A259301 . 7 17 103 6 120 %e A259301 . 17 137 8 154 %e A259301 . 17 239 14 256 %e A259301 . 8 19 191 10 210 %e A259301 . 19 229 12 248 %e A259301 . 9 23 47 2 70 %e A259301 . 23 139 6 162 %e A259301 . 23 277 12 300 %e A259301 . 23 461 20 484 %e A259301 .10 29 59 2 88 %e A259301 . 29 233 8 262 %e A259301 . 29 349 12 378 %e A259301 . 29 523 18 552 %e A259301 By examining the p1a column it can be seen that %e A259301 a(1) = 0, a(2) = 0, a(3) = 1, a(4) = 1, a(5) = 3, a(6) = 3, %e A259301 a(7) = 3, a(8) = 2, a(9) = 4, a(10) = 4. %p A259301 # Makes use of conjecture in COMMENTS section. %p A259301 ppgen := proc (ub) %p A259301 local freq_p1a, i, j, k, nprimes, p1a, p1b, pless; %p A259301 # Construct set of primes < ub in pless. %p A259301 pless := {}; %p A259301 for i from 3 to ub do %p A259301 if isprime(i) then %p A259301 pless := `union`(pless, {i}); %p A259301 end if %p A259301 end do; %p A259301 nprimes := numelems(pless); %p A259301 # Determine frequency of each p1a. %p A259301 printf("0, "); # For prime 2. %p A259301 for j to nprimes do %p A259301 p1a := pless[j]; %p A259301 freq_p1a := 0; %p A259301 for k to (p1a-3)/2 do %p A259301 p1b := 2*k*p1a+1; %p A259301 if isprime(p1b) then %p A259301 freq_p1a := freq_p1a+1; %p A259301 end if; %p A259301 end do; %p A259301 printf("%d, ", freq_p1a); %p A259301 end do; %p A259301 end proc: %p A259301 ub := 1000: %p A259301 ppgen(ub): %Y A259301 Cf. A059756, A245664. %K A259301 nonn %O A259301 1,5 %A A259301 _Christopher Hunt Gribble_, Jun 23 2015