cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259310 Primes of the form: 1 + sigma(n)^4.

This page as a plain text file.
%I A259310 #14 Sep 08 2022 08:46:13
%S A259310 2,257,1297,614657,331777,331777,160001,331777,9834497,5308417,
%T A259310 8503057,5308417,9834497,65610001,5308417,8503057,40960001,65610001,
%U A259310 29986577,384160001,40960001,303595777,1049760001,65610001,1944810001,3782742017,1944810001,1049760001
%N A259310 Primes of the form: 1 + sigma(n)^4.
%C A259310 These primes are neither sorted nor uniqued. They are listed in the order found in A259308.
%H A259310 Robert Price, <a href="/A259310/b259310.txt">Table of n, a(n) for n = 1..1459</a>
%H A259310 OEIS Wiki, <a href="https://oeis.org/wiki/Cyclotomic Polynomials at x=n, n! and sigma(n)">Cyclotomic Polynomials at x=n, n! and sigma(n)</a>
%F A259310 a(n) = A259308(A259309(n)).
%p A259310 with(numtheory): A259310:=n->`if`(isprime(1+sigma(n)^4), 1+sigma(n)^4, NULL): seq(A259310(n), n=1..200); # _Wesley Ivan Hurt_, Jul 09 2015
%t A259310 Select[Table[1 + DivisorSigma[1, n]^4, {n, 10000}], PrimeQ]
%t A259310 Select[Table[Cyclotomic[8, DivisorSigma[1, n]], {n, 10000}], PrimeQ]
%o A259310 (Magma) [a: n in [1..150] | IsPrime(a) where a is 1 + SumOfDivisors(n)^4]; // _Vincenzo Librandi_, Jun 24 2015
%Y A259310 Cf. A000203, A259308, A259309.
%K A259310 easy,nonn
%O A259310 1,1
%A A259310 _Robert Price_, Jun 24 2015