cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A307122 3-deficient numbers with increasing abundancy: Numbers k such that sigma(m)/m < sigma(k)/k < 3 for all numbers m < k such that sigma(m)/m < 3.

Original entry on oeis.org

1, 2, 4, 6, 12, 24, 36, 48, 60, 168, 252, 300, 336, 630, 2268, 2310, 5472, 6804, 20412, 47424, 61236, 161304, 183708, 486096, 551124, 1215216, 1653372, 4081104, 4960116, 14880348, 44641044, 133923132, 401769396, 1205308188, 1631268870, 3615924564, 10847773692
Offset: 1

Views

Author

Amiram Eldar, Mar 26 2019

Keywords

Comments

Analogous to A259312 with 3-deficient numbers instead of 3-abundant numbers.
Analogous to A228450 with ratio 3 instead of 2.
The values of sigma(a(n))/a(n) are 1, 1.5, 1.75, 2, 2.333..., 2.5, 2.527..., 2.583..., 2.8, ...

Crossrefs

Programs

  • Mathematica
    sm=0; seq={}; Do[s=DivisorSigma[1,n]/n; If[s<3 && s>sm, sm=s; AppendTo[seq, n]], {n,1,100000}]; seq

A336671 Unitary barely 3-abundant: numbers m such that 3 < usigma(m)/m < usigma(k)/k for all numbers k < m, where usigma is the sum of unitary divisors function (A034448).

Original entry on oeis.org

30030, 39270, 43890, 46410, 51870, 62790, 67830, 79170, 82110, 91770, 103530, 161070, 166530, 709170, 718410, 723030, 732270, 764610, 778470, 801570, 806190, 815430, 829290, 833910, 847770, 861630, 875490, 884730, 155934030, 264670770, 1234205070, 1448478570
Offset: 1

Views

Author

Amiram Eldar, Jul 29 2020

Keywords

Comments

The corresponding values of usigma(m)/m are 3.222..., 3.168...., 3.149..., 3.127..., 3.109..., ...

Crossrefs

The unitary version of A259312.
Subsequence of A285615.

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); s = {}; rm = 4; Do[r = usigma[n]/n; If[r > 3 && r < rm, rm = r; AppendTo[s, n]], {n, 1, 10^5}]; s
Showing 1-2 of 2 results.