A259314 Decimal expansion of partition factorial constant.
9, 1, 1, 0, 1, 6, 7, 3, 1, 3, 3, 2, 2, 4, 9, 9, 5, 1, 8, 6, 1, 5, 4, 7, 4, 6, 9, 5, 9, 4, 6, 8, 3, 4, 5, 2, 7, 8, 0, 7, 3, 8, 6, 0, 9, 7, 8, 0, 0, 8, 0, 9, 3, 0, 2, 8, 1, 3, 2, 1, 4, 9, 0, 2, 2, 7, 5, 9, 1, 4, 9, 1, 2, 4, 0, 4, 5, 5, 5, 7, 5, 1, 1, 6, 5, 0, 2, 5, 3, 7, 0, 7, 0, 2, 7, 5, 3, 9, 2, 1, 0, 4, 4, 7, 5, 0
Offset: 0
Examples
0.91101673133224995186154746959468345278073860978008093028132149022759...
Links
- Vaclav Kotesovec, The partition factorial constant and asymptotics of the sequence A058694
Programs
-
Mathematica
(* The iteration cycle: *) Do[Print[Product[N[PartitionsP[k]/((E^(Sqrt[2/3]*Sqrt[k-1/24]*Pi) * (1 - Sqrt[3/2]/(Sqrt[k-1/24]*Pi))) / (4*Sqrt[3]*(k-1/24))), 150], {k, 1, n}]], {n, 500, 50000, 500}]
Formula
Equals limit n->infinity Product_{k=1..n} p(k) / (exp(Pi*sqrt(2/3*(k-1/24))) / (4*sqrt(3)*(k-1/24)) * (1 - sqrt(3/(2*(k-1/24)))/Pi)), where p(k) is the partition function A000041.