cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259321 a(n) = A259110(n)*A259323(n) - A259319(n)^2.

This page as a plain text file.
%I A259321 #19 Aug 16 2015 12:04:01
%S A259321 0,2304,290304,6386688,65235456,424030464,2038772736,7894388736,
%T A259321 25960393728,75123949824,196144058880,470584857600,1051840857600,
%U A259321 2213790808320,4424337967104,8453141250048,15525242320896,27535076464896,47338548401664,79144486327296
%N A259321 a(n) = A259110(n)*A259323(n) - A259319(n)^2.
%H A259321 Colin Barker, <a href="/A259321/b259321.txt">Table of n, a(n) for n = 1..1000</a>
%H A259321 J. L. Bailey, Jr., <a href="http://dx.doi.org/10.1214/aoms/1177732978">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., 2 (1931), 355-359.
%H A259321 J. L. Bailey, <a href="/A002309/a002309.pdf">A table to facilitate the fitting of certain logistic curves</a>, Annals Math. Stat., 2 (1931), 355-359. [Annotated scanned copy]
%H A259321 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F A259321 a(n) = (4096*n^10-15360*n^8+16128*n^6-5440*n^4+576*n^2)/525. - _Colin Barker_, Jun 29 2015
%F A259321 G.f.: -2304*x^2*(x+1)*(x^6+114*x^5+1327*x^4+3260*x^3+1327*x^2+114*x+1) / (x-1)^11. - _Colin Barker_, Jun 29 2015
%e A259321 n=3: 290304 = 70*32710 - 1414^2.
%t A259321 LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {0, 2304, 290304, 6386688, 65235456, 424030464, 2038772736, 7894388736, 25960393728, 75123949824, 196144058880}, 30] (* _Vincenzo Librandi_, Jun 29 2015 *)
%o A259321 (PARI) concat(0, Vec(-2304*x^2*(x +1)*(x^6 +114*x^5 +1327*x^4 +3260*x^3 +1327*x^2 +114*x +1) / (x -1)^11 + O(x^100))) \\ _Colin Barker_, Jun 29 2015
%Y A259321 Cf. A259110, A259323, A259319.
%K A259321 nonn,easy
%O A259321 1,2
%A A259321 _N. J. A. Sloane_, Jun 24 2015