A259326 Ceiling of ((2^n)!+(2^n-1)^2*(2^(n-1))!*2^(2^(n-1)))/(4^n*(n!)^2).
1, 2, 26, 141907500, 17844701940490373256193966080, 59757436204078657410908164193971177467473348779378572774972093904092502425600000
Offset: 1
Keywords
Links
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
- C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
Programs
-
Maple
# Maple code for A259326, A259327, A259328, A259329, A259330, A259331: f:=n->((2^n)!+(2^n-1)^2*(2^(n-1))!*2^(2^(n-1)))/(4^n*(n!)^2); f:=n->((2^n)!)/(4^n*(n!)^2); f:=n->((2^n)!)/(2^(n*(n-1))*mul((2^i-1)^2,i=1..n)); f:=n->((2^n)!)/(4^(n^2)); f:=n->((2^n)!)/(2^(n*(n+1))*mul((2^i-1)^2,i=1..n)); f:=n->((2^n)!)/(4^n*2^(2*n^2)); [seq(ceil(f(n)),n=1..6)];