This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259332 #24 Mar 30 2023 07:38:22 %S A259332 1,1,2,1,6,5,1,12,27,14,1,20,85,112,42,1,30,205,492,450,132,1,42,420, %T A259332 1582,2565,1782,429,1,56,770,4172,10415,12562,7007,1430 %N A259332 Triangle read by rows: T(n,k) = number of column-convex polyominoes with perimeter n and k columns (1 <= k <= n). %H A259332 M.-P. Delest, <a href="/A006026/a006026.pdf">Utilisation des Langages Algébriques et du Calcul Formel Pour le Codage et l'Enumeration des Polyominos</a>, Ph.D. Dissertation, Université Bordeaux I, May 1987. [Scanned copy, with permission. A very large file.] See Figure 8. %H A259332 M.-P. Delest, <a href="/A006026/a006026_1.pdf">Utilisation des Langages Algébriques et du Calcul Formel Pour le Codage et l'Enumeration des Polyominos</a>, Ph.D. Dissertation, Université Bordeaux I, May 1987. (Annotated scanned copy of a small part of the thesis) %H A259332 M.-P. Delest, <a href="http://dx.doi.org/10.1016/0097-3165(88)90071-4">Generating functions for column-convex polyominoes</a>, J. Combin. Theory Ser. A 48 (1988), no. 1, 12-31. %H A259332 S. Dulucq, <a href="/A005819/a005819.pdf">Etude combinatoire de problèmes d'énumeration, d'algorithmique sur les arbres et de codage par des mots</a>, a thesis presented to L'Université De Bordeaux I, 1987. (Annotated scanned copy) %e A259332 Triangle begins: %e A259332 1, %e A259332 1,2, %e A259332 1,6,5, %e A259332 1,12,27,14, %e A259332 1,20,85,112,42, %e A259332 1,30,205,492,450,132, %e A259332 1,42,420,1582,2565,1782,429, %e A259332 1,56,770,4172,10415,12562,7007,1430, %e A259332 ... %Y A259332 Row sums are A006026. %K A259332 nonn,tabl,more %O A259332 1,3 %A A259332 _N. J. A. Sloane_, Jun 24 2015