This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259356 #16 Aug 16 2015 16:15:01 %S A259356 0,0,1,0,1,2,0,2,9,3,0,5,38,35,4,0,14,181,284,95,5,0,42,938,2225,1320, %T A259356 210,6,0,132,5210,17816,15810,4596,406,7 %N A259356 Triangle T(n,k) read by rows: T(n,k) is the number of closed lambda-terms of size n with size 0 for the variables and k abstractions. %F A259356 T(n,k) = T(n,k,0) where T(n,k,b) where n is size, k is number of abstractions, and b is number of free variables, T(0,0,b) = b, and T(n,k,b) = T(n-1,k-1,b+1) + Sum_{i=0..n-1} Sum_{j=0..k} T(i,j,b) * T(n-1-i,k-j,b). %F A259356 T(n+1,1) = A000108(n). %e A259356 In table format, the first few rows: %e A259356 {0}, %e A259356 {0,1}, %e A259356 {0,1,2}, %e A259356 {0,2,9,3}, %e A259356 {0,5,38,35,4}, %e A259356 ... %e A259356 For n=3,k=2 we have the number of closed lambda terms of size three with exactly two abstractions, T(3,2,0) = 9: %e A259356 \x.\y.x x %e A259356 \x.\y.x y %e A259356 \x.\y.y x %e A259356 \x.\y.y y %e A259356 (\x.x) (\y.y) %e A259356 \x.(\y.y) x %e A259356 \x.(\y.x) x %e A259356 \x.x (\y.y) %e A259356 \x.x (\y.x) %Y A259356 Cf. A220894 (row sums), A000108. %K A259356 nonn,tabl,more %O A259356 0,6 %A A259356 _John Bodeen_, Jun 24 2015