cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259378 Palindromic numbers in bases 4 and 7 written in base 10.

This page as a plain text file.
%I A259378 #13 Aug 18 2015 12:57:29
%S A259378 0,1,2,3,5,85,150,235,257,8802,9958,13655,14811,189806,428585,786435,
%T A259378 9262450,31946605,34179458,387973685,424623193,430421657,640680742,
%U A259378 742494286,1692399385,22182595205,30592589645,1103782149121,1134972961921,1871644872505,2047644601565,3205015384750,3304611554563,3628335729863,4467627704385
%N A259378 Palindromic numbers in bases 4 and 7 written in base 10.
%H A259378 Giovanni Resta, <a href="/A259378/b259378.txt">Table of n, a(n) for n = 1..48</a>
%H A259378 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>
%F A259378 Intersection of A014192 and A029954.
%e A259378 85 is in the sequence because 85_10 = 151_7 = 1111_4.
%t A259378 (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 7]; If[palQ[pp, 4], AppendTo[lst, pp]; Print[pp]]; k++]; lst
%t A259378 b1=4; b2=7; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* _Vincenzo Librandi_, Jul 17 2015 *)
%Y A259378 Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412.
%K A259378 nonn,base
%O A259378 1,3
%A A259378 Eric A. Schmidt and _Robert G. Wilson v_, Jul 16 2015