cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259383 Palindromic numbers in bases 5 and 8 written in base 10.

This page as a plain text file.
%I A259383 #13 Aug 18 2015 12:57:29
%S A259383 0,1,2,3,4,6,18,36,186,438,2268,2709,11898,18076,151596,228222,563786,
%T A259383 5359842,32285433,257161401,551366532,621319212,716064597,2459962002,
%U A259383 5018349804,5067084204,7300948726,42360367356,139853034114,176616961826,469606524278,669367713609,1274936571666,1284108810066,5809320306961,8866678870082,11073162740322,14952142559323,325005646077513
%N A259383 Palindromic numbers in bases 5 and 8 written in base 10.
%H A259383 Giovanni Resta, <a href="/A259383/b259383.txt">Table of n, a(n) for n = 1..67</a>
%H A259383 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>
%F A259383 Intersection of A029952 and A029803.
%e A259383 186 is in the sequence because 186_10 = 272_8 = 1221_5.
%t A259383 (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 5], AppendTo[lst, pp]; Print[pp]]; k++]; lst
%t A259383 b1=5; b2=8; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* _Vincenzo Librandi_, Jul 17 2015 *)
%Y A259383 Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412.
%K A259383 nonn,base
%O A259383 1,3
%A A259383 Eric A. Schmidt and _Robert G. Wilson v_, Jul 16 2015