This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259384 #13 Aug 18 2015 12:57:29 %S A259384 0,1,2,3,4,5,7,154,178,203,5001,7409,315721,567434,1032507,46823602, %T A259384 56939099,84572293,119204743,1420737297,1830945641,2115191225, %U A259384 3286138051,3292861699,4061216947,8094406311,43253138565,80375377033,88574916241,108218625313,116606986537,116755331881,166787896538,186431605610,318743407660,396619220597,1756866976011,4920262093249,11760498311914,15804478291811,15813860880803,24722285628901,33004205249575,55584258482529,371039856325905,401205063672537,516268720555889 %N A259384 Palindromic numbers in bases 6 and 8 written in base 10. %H A259384 Giovanni Resta, <a href="/A259384/b259384.txt">Table of n, a(n) for n = 1..74</a> %H A259384 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a> %F A259384 Intersection of A029953 and A029803. %e A259384 178 is in the sequence because 178_10 = 262_8 = 454_6. %t A259384 (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 6], AppendTo[lst, pp]; Print[pp]]; k++]; lst %t A259384 b1=6; b2=8; lst={}; Do[d1=IntegerDigits[n,b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* _Vincenzo Librandi_, Jul 17 2015 *) %Y A259384 Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412. %K A259384 nonn,base %O A259384 1,3 %A A259384 Eric A. Schmidt and _Robert G. Wilson v_, Jul 16 2015