A259385 Palindromic numbers in bases 2 and 9 written in base 10.
0, 1, 3, 5, 7, 127, 255, 273, 455, 6643, 17057, 19433, 19929, 42405, 1245161, 1405397, 1786971, 2122113, 3519339, 4210945, 67472641, 90352181, 133638015, 134978817, 271114881, 6080408749, 11022828069, 24523959661, 25636651261, 25726334461, 28829406059, 1030890430479, 1032991588623, 1085079274815, 1616662113341
Offset: 1
Examples
273 is in the sequence because 273_10 = 333_9 = 100010001_2.
Links
Crossrefs
Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412.
Programs
-
Mathematica
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 2], AppendTo[lst, pp]; Print[pp]]; k++]; lst
-
Python
def nextpal(n, base): # m is the first palindrome successor of n in base base m, pl = n+1, 0 while m > 0: m, pl = m//base, pl+1 if n+1 == base**pl: pl = pl+1 n = n//(base**(pl//2))+1 m, n = n, n//(base**(pl%2)) while n > 0: m, n = m*base+n%base, n//base return m n, a2, a9 = 0, 0, 0 while n <= 30: if a2 < a9: a2 = nextpal(a2,2) elif a9 < a2: a9 = nextpal(a9, 9) else: # a2 == a9 print(a2, end=",") a2, a9, n = nextpal(a2,2), nextpal(a9,9), n+1 # A.H.M. Smeets, Jun 03 2019