cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259386 Palindromic numbers in bases 3 and 9 written in base 10.

This page as a plain text file.
%I A259386 #13 Aug 18 2015 12:57:29
%S A259386 0,1,2,4,8,10,20,40,80,82,91,100,164,173,182,328,364,400,656,692,728,
%T A259386 730,820,910,1460,1550,1640,2920,3280,3640,5840,6200,6560,6562,6643,
%U A259386 6724,7300,7381,7462,8038,8119,8200,13124,13205,13286,13862,13943,14024,14600,14681,14762,26248,26572,26896,29200,29524,29848,32152,32476,32800,52496,52820,53144,55448,55772,56096,58400,58724,59048,59050,59860,60670,65620,66430,67240,72190,73000,73810
%N A259386 Palindromic numbers in bases 3 and 9 written in base 10.
%H A259386 Giovanni Resta, <a href="/A259386/b259386.txt">Table of n, a(n) for n = 1..10000</a>
%H A259386 <a href="/index/Pac#palindromes">Index entries for sequences related to palindromes</a>
%F A259386 Intersection of A014190 and A029955.
%e A259386 40 is in the sequence because 40_10 = 44_9 = 1111_3.
%t A259386 (* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 9]; If[palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst
%t A259386 b1=3; b2=9; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 80000}]; lst (* _Vincenzo Librandi_, Jul 17 2015 *)
%Y A259386 Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412.
%K A259386 nonn,base
%O A259386 1,3
%A A259386 Eric A. Schmidt and _Robert G. Wilson v_, Jul 16 2015