This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A259399 #16 Jun 24 2022 19:58:29 %S A259399 1,2,6,15,40,89,210,435,919,1819,3583,6719,12648,22849,41074,72050, %T A259399 125411,213620,361845,601945,995074,1622338,2626342,4201367,6681992, %U A259399 10515756,16449852,25509952,39333476,60172701,91577517,138390481,208096282,310976731,462512831 %N A259399 a(n) = Sum_{k=0..n} p(k)^2, where p(k) is the partition function A000041. %C A259399 In general, Sum_{k=0..n} p(k)^m ~ sqrt(6*n)/(m*Pi) * p(n)^m ~ exp(m*Pi*sqrt(2*n/3)) / (m * Pi * 3^((m-1)/2) * 2^(2*m-1/2) * n^(m-1/2)), for m >= 1. %H A259399 Alois P. Heinz, <a href="/A259399/b259399.txt">Table of n, a(n) for n = 0..5000</a> %F A259399 a(n) ~ exp(2*Pi*sqrt(2*n/3)) / (16*sqrt(6)*Pi*n^(3/2)). %F A259399 a(n) = 1 + A209536(n). - _Alois P. Heinz_, Oct 21 2018 %p A259399 a:= proc(n) option remember; `if`(n<0, 0, %p A259399 combinat[numbpart](n)^2+a(n-1)) %p A259399 end: %p A259399 seq(a(n), n=0..40); # _Alois P. Heinz_, Oct 21 2018 %t A259399 Table[Sum[PartitionsP[k]^2,{k,0,n}],{n,0,50}] %Y A259399 Cf. A000041, A000070, A209536, A265093. %Y A259399 Partial sums of A001255. %K A259399 nonn %O A259399 0,2 %A A259399 _Vaclav Kotesovec_, Jun 26 2015